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“ I’ve been waiting for a book like this for ten years: packed with game design    
 goodness that tackles the science without undermining the art.”

         — Richard Bartle, University of Essex, co-author of the first MMORPG

Game mechanics are the rules, processes, and data at the heart of a game. 
They define how play progresses, what happens when, and what conditions 
determine victory or defeat. Now two leading authorities in game design—
Ernest Adams and Joris Dormans—are here to teach game designers and 
students alike the essentials of game mechanics.  

This in-depth resource teaches you to craft mechanics that generate 
challenging, enjoyable, and well-balanced gameplay. You’ll discover at  
what stages to prototype, test, and implement mechanics in games and  
learn how to visualize and simulate game mechanics to design better  
games. Along the way, you’ll practice what you’ve learned with hands-on 
lessons. A free downloadable simulation tool developed by Joris Dormans  
is also available to help you follow along with exercises in the book in an 
easy-to-use graphical environment. 

In Game Mechanics: Advanced Game Design, you’ll learn how to:

—  Design and balance game mechanics to create emergent gameplay  
before you write a single line of code.

—  Visualize the internal economy so that you can immediately see what  
goes on in a complex game.

—  Use novel prototyping techniques that let you simulate games and  
collect vast quantities of gameplay data on the first day of development.

—  Apply design patterns for game mechanics—from a library in this  
book—to improve your game designs.

—  Explore the delicate balance between game mechanics and level  
design to create compelling, long-lasting game experiences. 

— Replace fixed, scripted events in your game with dynamic progression  
 systems to give your players a new experience every time they play. 
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This is a book about games at their deepest level. No matter how good a game looks, 
it won’t be fun if its mechanics are boring or unbalanced. Game mechanics create 
gameplay, and to build a great game, you must understand how this happens.

Game Mechanics will show you how to design, test, and tune the core mechanics of 
a game—any game, from a huge role-playing game to a casual mobile phone game 
to a board game. Along the way, we’ll use many examples from real games that you 
may know: Pac-Man, Monopoly, Civilization, StarCraft II, and others.

This book isn’t about building Unreal mods or cloning somebody else’s app that’s 
trending right now. It’s called Advanced Game Design for a reason. We wrote Game 
Mechanics to teach you the timeless principles and practice of mechanics design  
and, above all, to give you the tools to help you do it—for a class, for a career, for  
a lifetime.

We also provide you with two unique features that you won’t find in any other  
textbook on game design. One is a new tool called Machinations that you can use to  
visualize and simulate game mechanics on your own computer, without writing any 
code or using a spreadsheet. Machinations allows you to actually see what’s going 
on inside your mechanics as they run and to collect statistical data. Not sure if your 
internal economy is balanced correctly? Machinations will let you perform 1,000 
runs in a few seconds to see what happens and put all the data at your fingertips. 
Machinations was created by Joris Dormans and is easy to use on any computer 
that has Adobe Flash Player installed in its web browser. You don’t have to use the 
Machinations Tool to benefit from the book, though. It’s simply there to help rein-
force the concepts.

The other unique feature of Game Mechanics is our design pattern library. Other authors 
have tried to document game design patterns before, but ours is the first to distill 
mechanics design to its essence: the deep structures of game economies that gener-
ate challenge and the many kinds of feedback loops. We have assembled a collection 
of classic patterns in various categories: engines of growth, friction, and escalation, 
plus additional mechanisms that create stability cycles, arms races, trading systems,  
and many more. We’ve made these general enough that you can apply them to 
any game you build, yet they’re practical enough that you can load them in the 
Machinations Tool and see how they work.

Game mechanics lie at the heart of all game design. They implement the living 
world of the game; they generate active challenges for players to solve in the game 
world, and they determine the effects of the players’ actions on that world. It is the 
game designer’s job to craft mechanics that generate challenging, enjoyable, and 
well-balanced gameplay.

We wrote this book to help you do that. 

xi

Introduction
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Who Is This Book For?
Game Mechanics is aimed at game design students and industry professionals 
who want to improve their understanding of how to design, build, and test the 
mechanics of a game. Although we have tried to be as clear as we can, it is not 
an introductory work. Our book expands on the ideas in another book by Ernest 
Adams called Fundamentals of Game Design (New Riders). We refer to it from time 
to time, and if you lack a grounding in the basics of game design, you might find it 
helpful to read the current edition of Fundamentals of Game Design first.

The chapters in Game Mechanics end with exercises that let you practice the prin-
ciples we teach. Unlike the exercises in Fundamentals of Game Design, many of them 
require a computer to complete.

How Is This Book Organized?
Game Mechanics is divided into 12 chapters and 2 appendixes that contain valuable  
reference information. There is also a quick reference guide to Machinations in 
Appendix A.

Chapter 1, “Designing Game Mechanics,” establishes key ideas and defines terms 
that we use in the book, and it discusses when and how to go about designing game 
mechanics. It also lists several forms of prototyping.

Chapter 2, “Emergence and Progression,” introduces and contrasts the important 
concepts of emergence and progression.

Chapter 3, “Complex Systems and the Structure of Emergence,” describes the nature 
of complexity and explains how complexity creates emergent, unpredictable game 
systems.

Chapter 4, “Internal Economy,” offers an overview of internal economies. We show  
how the structure of an economy creates a game shape and produces different phases 
of gameplay. 

Chapter 5, “Machinations,” introduces the Machinations visual design language and 
the Machinations Tool for building and simulating mechanics. It includes an exten-
sive example using Pac-Man as a model.

Chapter 6, “Common Mechanisms,” describes a few of the more advanced features 
of Machinations and shows how to use it to build and simulate a wide variety of 
common mechanisms, with examples from many popular game genres.

Chapter 7, “Design Patterns,” provides an overview of the design patterns in our 
design pattern library and offers suggestions about how to use them to brainstorm 
new ideas for your designs.
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Chapter 8, “Simulating and Balancing Games,” explains how to use Machinations 
to simulate and balance games, with case studies from Monopoly and Will Wright’s 
SimWar.

Chapter 9, “Building Economies,” explores economy-building games, using Caesar 
III as an example, and takes you through the design and refinement process for a 
new game of our own, Lunar Colony.

Chapter 10, “Integrating Level Design and Mechanics,” moves into new territory, 
looking at how game mechanics integrate with level design and how properly 
sequenced challenges help the player learn to play.

Chapter 11, “Progression Mechanisms,” discusses two kinds of progression. We start 
with traditional lock-and-key mechanics and then consider emergent progression 
systems in which progress is treated a resource within the economy of the game.

Chapter 12, “Meaningful Mechanics,” concludes the book with an exploration of the  
role of mechanics in transmitting meaning in games that have a real-world message 
to send. This topic is increasingly important now that game developers are making 
more serious games: games for health care, education, charity, and other purposes.

Appendix A, “Machinations Quick Reference,” lists the most commonly used  
elements of the Machinations Tool. 

Appendix B, “Design Pattern Library,” contains several patterns from our design 
pattern library. You can find the completed design pattern library in the online 
Appendix B at www.peachpit.com/gamemechanics and a much more extensive discus-
sion of each design pattern in Chapter 7.

Appendix C, “Getting Started with Machinations,” is available online at  
www.peachpit.com/gamemechanics and provides a tutorial for using the  
Machinations Tool.

Companion Website
At www.peachpit.com/gamemechanics you’ll find material for instructors, digital copies 
of many of the Machinations diagrams used in this book, more design patterns,  
and a step-by-step tutorial to get you started with Machinations. To get access to 
this bonus material, all you need to do is register yourself as a Peachpit reader. The 
material on the website may be updated from time to time, so make sure you have 
the latest versions.

www.peachpit.com/gamemechanics
www.peachpit.com/gamemechanics
www.peachpit.com/gamemechanics
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 1Designing Game 
Mechanics
Game mechanics are the rules, processes, and data at the heart of a game. They 
define how play progresses, what happens when, and what conditions determine 
victory or defeat. In this chapter, we’ll introduce five types of game mechanics and 
show how they’re used in some of the more common video game genres. We’ll 
also discuss at what stage during the game design process you should design and 
prototype mechanics, and we’ll describe three kinds of prototyping, addressing 
the strengths and weaknesses of each. By the end of the chapter, you should have 
a clear understanding of what game mechanics are for and how to think about 
designing them.

Rules Define Games
There are many different definitions of what a game is, but most of them agree that 
rules are an essential feature of games. For example, in Fundamentals of Game Design, 
Ernest Adams defines games as follows:

A game is a type of play activity, conducted in the context of a pretended reality, in 
which the participants try to achieve at least one arbitrary, nontrivial goal by acting in 
accordance with rules.

In Rules of Play, Katie Salen and Eric Zimmerman write the following:

A game is a system in which players engage in artificial conflict, defined by rules, that 
results in a quantifiable outcome.

In Half-Real, Jesper Juul says this:

A game is a rule-based system with a variable and quantifiable outcome, where differ-
ent outcomes are assigned different values, the player exerts effort in order to influence the 
outcome, the player feels emotionally attached to the outcome, and the consequences of  
the activity are negotiable.

(Emphasis added in all cases.) We don’t intend to compare these different definitions 
or to claim that one of them is the best. The point is that they all refer to rules. In 
games, rules determine what players can do and how the game will react.

1

ChAptEr 1
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Games as state machines

many games, and game components, can be understood as state machines (see, for 
example, Järvinen 2003; Grünvogel 2005; Björk & holopainen 2005). a state machine  
is a hypothetical machine that can exist in a certain number of different states, each  
state having rules that control the machine’s transition from that state into other states. 
Think of a dvd player: When a dvd is playing, the machine is in the play state. Pressing 
the pause button changes it to the paused state, while pressing the stop button causes  
it to return to the dvd menu—a different state. Pressing the play button does nothing  
at all—the player remains in the play state.

a game begins in an initial state, and the actions of the player (and often the mechanics, 
too) bring about new states until an end state is reached. in the case of many single-player 
video games, the player either wins, loses, or quits. The game’s state usually reflects 
the player’s location; the location of other players, allies, and enemies; and the current 
distribution of vital game resources. By looking at games as state machines, researchers 
can determine which rules cause the game to progress from one state to another. several 
successful methods allow computer scientists to design, model, and implement state 
machines with a limited (finite) number of states. however, in contrast to dvd players, 
games can exist in a vast number of states, far too many to document.

Finite state machines are sometimes used in practice to define the behavior of simple  
artificially intelligent non-player characters. Units in a war game often have states such 
as attacking, defending, and patrolling. however, because this is not a book about artifi-
cial intelligence, we won’t be addressing those techniques here. state machine theory is 
not useful for studying the kinds of complex mechanics that this book is about.

Games Are Unpredictable
A game’s outcome should not be clear from the start: To a certain extent, games 
should be unpredictable. A game that is predictable is usually not much fun. A simple 
way of creating unpredictable outcomes is to include an element of chance, such as 
a throw of the dice or the twirl of a spinner in a board game. Short games such as 
blackjack or Klondike (the most familiar form of solitaire played with cards) depend 
almost entirely on chance. In longer games, however, players want their skills and 
their strategic decisions to make more of a difference. When players feel that their 
decisions and game-playing skills do not matter, they quickly become frustrated. 
Pure games of chance have their place in a casino, but for most other games, skill 
should also contribute to victory. The longer the game is, the more true this is.

In addition to chance, there are two other, and more sophisticated, ways to make 
games unpredictable: choices made by players and complex gameplay created by the 
game’s rules.

NOT E in games and 
simulations, processes 
that include elements 
of chance (such as 
moving a certain dis-
tance based upon a  
die roll) are called 
stochastic processes.
Processes that do not 
include chance, and 
whose outcome can be 
determined from their 
initial state, are called 
deterministic processes.
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A simple game such as rock-paper-scissors (or roshambo/rochambeau) is unpredict-
able because its outcome depends on the decisions made by the players. The rules 
do not favor one choice or another; they do not suggest a particular strategy. Trying 
to second-guess or influence the choice of your opponent might involve empathy 
or reverse psychology, but it remains largely outside the individual player’s control. 
The classic board game Diplomacy uses a similar mechanism. In this game, players 
control only a handful of armies and fleets. Victory in battle simply goes to the side 
that committed the largest number of units to a battle. However, because all the 
players write down their moves secretly and resolve their turns simultaneously, the 
players must use their social skills to find out where their opponent will strike and 
to convince their allies to support their offensive and defensive maneuvers.

When the rules of a game are complex, they can also make a game unpredictable, 
at least to human beings. Complex systems usually have many interacting parts. 
The behavior of individual parts might be easy to understand; their rules might be 
simple. However, the behavior of all the parts combined can be quite surprising and 
difficult to foresee. The game of chess is a classic example of this effect. The move-
ment rules of the 16 chess pieces are simple, but those simple rules produce a game 
of great complexity. Whole libraries have been written about chess strategies. Expert 
players try to lure opponents into traps involving many pieces that might take mul-
tiple turns to execute. In this type of game, the ability to read a game’s current state 
and understand its strategic complexities is the most important game-playing skill. 

Most games mix these three sources of unpredictability. They include an element of 
chance, player choices, and complex rules. Different players prefer different com-
binations of these techniques. Some like games that involve many random factors, 
while others prefer games where complexity and strategy are key. Of these three 
options, chance is the easiest to implement but not always the best source of unpre-
dictability. On the other hand, complex rule systems that offer many player choices 
are difficult to design well. This book will help you with that task. We devote most 
of the chapters to designing rule systems that create, among other things, interest-
ing choices for players. In Chapter 6, “Common Mechanisms,” we cover random 
number generators (the software equivalent of dice) and discuss them at several other 
points as well, but we feel that chance serves a supporting, rather than a central, 
role in mechanics design.

From Rules to Mechanics
The video game design community usually prefers the term game mechanics to game 
rules because rules are considered printed instructions that the player is aware of, while 
the mechanics of video games are hidden from the player, that is, implemented in 
software for which the player is given no direct user interface. Video game players 
don’t have to know what the game’s rules are when they begin; unlike board and card 
games, the video game teaches them as they play. Rules and mechanics are related 
concepts, but mechanics are more detailed and concrete. For example, the rules of 
Monopoly consist of only a few pages, but the mechanics of Monopoly include the 



ptg8274339

4 Game mechanics: advanced Game desiGn

prices of all the properties and the text of all the Chance and Community Chest 
cards—in other words, everything that affects the operation of the game. Mechanics 
need to be detailed enough for game programmers to turn them into code without 
confusion; mechanics specify all the required details.

The term core mechanics is often used to indicate mechanics that are the most influ-
ential, affecting many aspects of a game and interacting with mechanics of lesser 
importance, such as those that control only a single game element. For example, 
the mechanics that implement gravity in a platform game are core mechanics; they 
affect almost all moving objects in the game and interact with mechanics for jump-
ing or the mechanics that control damage to falling characters. On the other hand, 
a mechanic that merely enables players to move items around in their inventories  
would not be a core mechanic. The artificial intelligence routines that control the  
behavior of autonomous non-player characters are also considered not core mechanics.

In video games, the core mechanics are mostly hidden, but players will learn to 
understand them while playing. Expert players will deduce what the core mechan-
ics must be by watching the behavior of the game many times; they will learn 
how to use a game’s core mechanics to their advantage. The distinction between 
core mechanics and non-core mechanics is not clear-cut; even for the same game, 
interpretation of what is core and what is not can vary between designers or even 
between different contexts within the game.

mechanic or mechanism

Game designers are perfectly comfortable talking about a game mechanic in the singular 
form. They don’t mean a person who repairs game engines! instead, they are referring to 
a single game mechanism that governs a certain game element. in this book, we prefer 
to use mechanism as the singular form, indicating a single set of game rules associated 
with a single game element or interaction. One such mechanism might include several 
rules. For example, the mechanic of a moving platform in a side-scrolling platform game 
might include the speed of the platform’s movement, the fact that creatures can stand on 
it, the fact that they are moved along with it when they do, and the fact that the platform’s 
velocity is reversed when it bounces into other game elements or perhaps after it has 
traveled a particular distance.

Mechanics Are Media-Independent
The mechanics of a game can be implemented through many different media. In 
the case of a board game, the mechanics are implemented through the medium of 
the game’s paraphernalia: board, counters, playing pieces, spinners, and so on. The 
same game can also be published as a video game. In that case, the same mechanics 
will be implemented in software, which is a different medium. 
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Because mechanics are media-independent, most game scholars do not distinguish 
between video games, board games, and even physical games. The relationships 
between different entities in the game is much the same whether implemented on a 
board, with pieces you move by hand, or on a computer screen, with images moved 
for you by software. Not only can the same game be played in different media, 
sometimes a single game can use more than one medium. Today more and more 
games are hybrids: board games that include simple computers, or physical games 
facilitated by clever devices hooked up to remote computers.

In addition, the media independence of game mechanics allows designers to create 
mechanics for one game but then implement that game in several different media; 
this cuts down on development time, since the design work is done only once. 

hybrid Game example

The game Johann Sebastian Joust, developed by the copenhagen Games collective, is an 
excellent example of hybrid game design. The game uses no screen, only speakers, and 
takes place in an open area in which each player holds a Playstation move controller 
(Figure 1.1). Players who move their controller too fast are eliminated from the game, so 
players try to eliminate each other by shoving other players’ controllers, while maneuvering 
carefully to protect their own controllers, all in slow motion. Occasionally the tempo of 
the background music speeds up, indicating the speed at which the player can move safely. 
Johann Sebastian Joust is a hybrid multiplayer game that blends physical performance 
with simple computer-implemented mechanics to create a satisfying player experience.

FIGURe 1.1 Johann Sebastian Joust in full swing.  
image courtesy of Johan Bichel Lindegaard under a creative commons (cc BY 3.0) license.



ptg8274339

6 Game mechanics: advanced Game desiGn

Using different media can help when creating prototypes. Programming software 
usually takes much more work than simply writing down mechanics as rules for  
a board game. If the same game can be played in a board game or physical game 
form, it’s a good idea to try the rules/mechanics in one of those forms before going 
to the trouble and expense of implementing them on a computer. As you’ll see in 
the next section, efficient prototyping techniques are important tools in the game 
designer’s toolbox. 

Five Different Types of Mechanics
The term mechanics has come to indicate many different types of underlying rela-
tionships between entities in games. Here are five different types of mechanics that 
you might expect to find in a game:

n	 Physics. Game mechanics sometimes define physics—the science of motion and  
force—in the game world (which can be different from the physics of the real world).  
In games, characters commonly move from place to place, jump up and down, or 
drive vehicles. Computing a game element’s position, the direction in which it is 
moving, and whether it intersects or collides with other elements makes up the bulk   
of the calculations in many games. Physics plays a large role in many modern games, 
from ultrarealistic first-person shooters to the popular physics-puzzle games such  
as Angry Birds. The implementation is seldom strict; however, games with so-called 
cartoon physics use a modified version of Newtonian mechanics so that characters  
can do non-Newtonian things such as change direction while in midair. (We also  
consider such things as timing and rhythm challenges to be part of a game’s physics.)

n	 Internal economy. The mechanics of transactions involving game elements  
that are collected, consumed, and traded constitute a game’s internal economy. 
The internal economy of a game typically encompasses items easily identified as 
resources: money, energy, ammunition, and so on. However, a game’s economy 
is not limited to concrete, tangible items; it can also include abstractions such as 
health, popularity, and magical power. In any Zelda game, Link’s hearts—a visible 
measure of his life energy—are part of the internal economy. Skill points and other 
quantified abilities in many role-playing games also qualify; these games have very 
complex internal economies.

n	 Progression mechanisms. In many games, level design dictates how a player can 
move through the game world. Traditionally, the player’s avatar needs to get to a 
particular place to rescue someone or to defeat the main evil-doer and complete the 
level. In this type of game, the progress of the player is tightly controlled by a num-
ber of mechanisms that block or unlock access to certain areas. Levers, switches, and 
magical swords that allow you to destroy certain doors are typical examples of such 
progression mechanisms.
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n	 Tactical maneuvering. Games can have mechanics that deal with the placement 
of game units on a map for offensive or defensive advantages. Tactical maneuvering 
is critical in most strategy games but also features in some role-playing and simula-
tion games. The mechanics that govern tactical maneuvering typically specify what 
strategic advantages each type of unit may gain from being in each possible location.  
Many games restrict the location of units to discrete tiles, as is the case for a classic 
board game like chess. Even modern strategy games played on the computer often 
implement tiles, although they do a good job of hiding them behind a detailed 
visual layer. Tactical maneuvering appears in many board games such as chess and 
Go but also in computer strategy games such as StarCraft or Command & Conquer: 
Red Alert.

n	 Social interaction. Until recently, most video games did not govern social inter-
action among the players, apart from prohibiting collusion or requiring that players 
keep certain knowledge secret. Now, however, many online games include mechan-
ics that reward giving gifts, inviting new friends to join, and participating in other 
social interactions. In addition, role-playing games might have rules that govern 
the play-acting of a character, and a strategy game might include rules that govern 
the forming and breaking of alliances between players. Board games and folk games 
played by children have a longer history of game mechanisms that guide the inter-
actions among players.

Mechanics and Game Genres
The game industry categorizes games into genres based on the type of gameplay the 
game offers. Some games derive their gameplay mostly from their economy, others 
from physics, level progression, tactical maneuvering, or social dynamics. Because 
the gameplay is generated by the mechanics, it follows that the genre of a game 
has a significant effect on the kinds of rules it implements. Table 1.1 shows a typi-
cal game classification scheme and how these genres and their associated gameplay 
relate to different types of mechanics. The game genres in the table are taken from 
Fundamentals of Game Design, Second Edition and correlate to the five different types 
of game rules or structures. The thickness of the outlines indicates relative impor-
tance of those types of rules for most games in that genre.
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TAble 1.1
Game mechanics and 
Game Genres
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Discrete Mechanics vs. Continuous Mechanics
We’ve listed five types of mechanics, but there’s another important distinction to  
be made: Mechanics can be discrete or continuous. Modern games tend to simulate  
physics (including timing and rhythm) with precise mechanics that create a smooth, 
continuous flow of play. A game object might be positioned half a pixel more to the 
left or right, and this can have a huge effect on the result of a jump. For maximum 
accuracy, physical behaviors need to be computed with high-precision fractional 
values; this is what we mean by continuous mechanics. In contrast, the rules of an 
internal economy tend to be discrete and represented with integer (whole-number)  
values. In an internal economy, game elements and actions often belong to a finite 
set that does not allow any gradual transitions: In a game you usually cannot pick up 
half a power-up. These are discrete mechanics. This difference between game physics  
and game economies affects a game’s level of dependence on its medium, the nature 
of the player interaction, and even the designer’s opportunities for innovation.

Understanding the Mechanics of Physics
Accurate physics computations, especially in real time, require a lot of high-speed 
mathematical operations. This tends to mean that physics-based games must be 
implemented on a computer. Creating a board game for Super Mario Bros., in which 
the gameplay requires moving and jumping from platform to platform, would be 
difficult. In platform games, physical dexterity matters, just as it does in playing 
real-life football; those skills would be lost in a board game. Super Mario Bros. is prob-
ably better mediated as a physical course testing players’ real running and jumping 
abilities. The point is, a rule that states that you can jump twice as high after pick-
ing up a certain item can be easily translated between different media, but actually 
implementing that jump cannot. The continuous, physical mechanics of a game 
need computing power more than the discrete rules that govern a game’s economy.

Interestingly, when you look back at the early history of platform games and other 
early arcade games, the physics calculations were more discrete than they are today. 
The moves in Donkey Kong were much less continuous than they were in Super Mario 
Bros. In Boulder Dash, gravity is simulated by moving boulders down at a constant 
speed of one tile every frame. It might play slowly, but it is possible to create a board 
game for Boulder Dash. In those days, the rules that created the game’s physical 
mechanics were not that different from other types of game rules. The early game 
computers did not have any floating-point arithmetic instructions, so the game 
physics had to be simple. But times have changed. Today the physics in a platform 
game have grown so accurate and detailed that they have become impossible, or at 
least inconvenient, to represent with a board game.
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Mixing Physical Mechanics with Strategic Gameplay
With discrete rules, it is possible to look ahead, to plan moves, and to create and 
execute complex strategies. Although this isn’t always easy, it is possible, and many 
players enjoy doing it. Players interact with discrete mechanics on a mental, stra-
tegic level. Once players grasp the physics of a game, they can intuitively predict 
movements and results, but with less certainty. Skill and dexterity become a more 
important aspect of the interaction. This difference is crucial for gameplay and can 
be seen in a comparison between Angry Birds and World of Goo, two games that mix 
physical mechanics with strategic gameplay. 

In Angry Birds, players shoot birds from a catapult at defensive structures protecting  
pigs (Figure 1.2). The catapult is operated with a touch device, and because the 
physical simulation is so precise, a small difference in launch speed or angle can have  
a completely different effect on the structural damage the player causes. Catapulting 
the birds is mostly a matter of physical skill. The strategy in Angry Birds involves 
those aspects of the game that are governed by discrete rules. Players have to plan 
to attack the pigs’ defenses most effectively using the number and types of birds 
available in the level. This requires identifying weak spots and formulating a plan 
of attack, but the execution itself is based on hand-eye coordination, and the effects 
can never be foreseen in great detail.

FIGURe 1.2
Angry Birds
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Compare the mix of strategy and skill in Angry Birds with a similar mix in World of 
Goo (Figure 1.3). In World of Goo, players build constructions from a limited supply  
of goo balls. The game includes a detailed physical simulation that controls the 
player-built constructions. Physical phenomena such as gravity, momentum, and 
center of mass play an important role in the mechanics of the game. Indeed, players 
can form an intuitive understanding of these notions from playing World of Goo. But 
more importantly, players learn how to manage their most important (and discrete) 
resource, goo balls, and use them to build successful constructions. The difference 
between Angry Birds and World of Goo becomes very clear when you consider the 
respective effects of both games’ continuous, pixel-precise physics. In Angry Birds,
the difference of a single pixel can translate into a critical hit or complete miss. 
World of Goo is more forgiving. In that game, releasing a goo ball a little more to the 
left or right usually does not matter, because the resulting construction is the same, 
and spring forces push the ball into the same place. The game even shows what 
connections will be made before the player releases a ball (as shown in Figure 1.3). 
You can see that the gameplay is more strategic in World of Goo than it is in Angry 
Birds. World of Goo depends more on its discrete mechanics than on its continuous 
mechanics to create the player’s experience.

FIGURe 1.3
World of Goo
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Innovating with Discrete Mechanics
Discrete mechanics offer more opportunities for innovation than many of the current  
forms of continuous mechanics do. As games and genres change, designers’ definitions 
of physical mechanics are all evolving into a handful of directions that correspond 
closely with game genres. Most of the time there is little point in completely chang-
ing the physics of a first-person shooter. In fact, as games increasingly use physics 
engine middleware to handle these mechanics, there is less room to innovate in 
that area. On the other hand, all designers want to offer unique content, and many 
first-person shooters do include a unique system of power-ups, or an economy of 
items to collect and consume, to make their gameplay different from their com-
petitor’s. There is more room for creativity and innovation in the mechanics that 
govern these economies than in the physics of the game. This book concentrates on 
discrete mechanics.

Looking back at four decades of computer game history, it’s clear that game physics  
have evolved much faster than any other type of mechanics in games. Physics are  
comparatively easy to design because of the clarity of Newton’s laws and the increas-
ing computing power to simulate them. The laws of economics are far more complex 
and difficult to work with. In this book, we hope to give you a solid theoretical 
framework for nonphysical, discrete mechanics to make it easier.

Mechanics and the Game Design Process
There are almost as many different ways to design a game as there are game com-
panies. In Fundamentals of Game Design, Ernest Adams advocates an approach 
called player-centric game design, which concentrates on the players’ roles and the 
gameplay that they will experience. Adams defines gameplay as consisting of the 
challenges the game imposes on the player and the actions the game permits the 
player to perform. The mechanics create the gameplay. When Mario jumps across 
a canyon, the level design may define the shape of the canyon, but it is the game’s 
laws of physics—its physical mechanics—that determine how far he jumps, how 
gravity behaves, and whether he succeeds or fails.

Because the mechanics generate the gameplay, we encourage you to start designing  
the mechanics as soon as you know what gameplay you want to offer. The devel- 
opment process outlined in this section is player-centric game design with an extra 
emphasis on creating complex, but balanced, game mechanics.

Outlining the Game Design Process
Roughly speaking, the process of designing a game goes through three stages: the 
concept stage, the elaboration stage, and the tuning stage. These stages are discussed 
next, but you can find more details about these stages in Fundamentals of Game Design.

NOT E The mecha-
nistic perspective on 
gameplay used in 
this book is a narrow 
one and focuses on 
mechanics over many 
other aspects of games. 
it is what you might 
call a mechanistic per-
spective on games and 
gameplay. however, we 
do not want to argue 
that this is the only 
perspective on games 
or that it is the best 
one. in many games, 
art, story, sound, and 
music, among other 
features, contribute just 
as much to the player’s 
experience as gameplay 
does. sometimes they 
contribute even more. 
But we wrote this book 
to explore the relation-
ship between game 
mechanics and game-
play, and that is what 
we concentrate on.
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cOncePT sTaGe
During the concept stage, the design team will decide on the game’s general idea, the 
target audience, and the player’s role. The results of this phase will be documented 
in a vision document or a game treatment. Once you have made these key decisions,  
you should not change them throughout the remainder of the design process.

In the concept stage, you might create a very quick, experimental version of the game’s 
basic mechanics just to see if it produces fun gameplay, if you are not certain what 
kind of game you want to make. These proof-of-concept prototypes can also help you 
pitch your design vision to the rest of the team or to a funding agency, or playtest 
key assumptions. However, you should assume that you will throw this work away 
and do it again from scratch in the elaboration stage. This will enable you to work 
faster in the concept stage, without worrying if you create something buggy. You 
should not start to design the real, final mechanics until this stage is over, because 
your plans may change and it would be wasted effort.

eLaBOraTiOn sTaGe
During the elaboration stage—which usually begins once the project has been 
funded—the development of the game goes into full swing. During this phase, you 
will create game mechanics and levels, draft the story, create art assets, and so on.  
It is vital that during this phase the development team works in short, iterative 
cycles. Each cycle will produce some playable product or prototype that must be 
tested and evaluated before the design can move on. Do not expect to get everything 
right the first time. You will have to redesign many features during this stage. It’s a 
good idea to get players representative of the audience from outside your team to 
playtest parts of your game during this stage, too. When a prototype is playtested 
only by members of the development team, you will not get a good idea of how real 
players will eventually play and approach the game. Your development team may 
fall outside the game’s target audience, and they generally know the game too well 
to be good test subjects.

TUninG sTaGe
The tuning stage starts with a feature freeze. At this point, you will decide as a team 
that you are happy with the game’s feature set and you are not going to add any 
more features. Instead, you focus on polishing what you have. Enforcing a feature 
freeze can be difficult: You are still working on the game, and you will invariably 
come up with some new clever ideas you did not think of during earlier stages. 
However, at this late stage of development, even small changes can have devastat-
ing unseen effects on the game and add significantly to the debugging and tuning 
process—so don’t do it! If anything, the tuning stage is a subtractive process: You 
should take out anything that does not work, or has little value for the game, and 
focus the design on the things that do work to make it really shine. In addition, 
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when planning a game project, it is easy to underestimate how much work tuning 
actually is. In our experience, polishing and tuning can take anywhere between one-
third and half of the entire development time.

documentinG desiGns

Game design documents are used to record designs as games are being built. every 
game company has its own standard for these documents, and every game company uses 
them in a different way. Typically, a game design document starts with a brief descrip-
tion of the game’s concept, target audience, core mechanics, and intended art style. 
many companies keep the design document up-to-date. every mechanism that is added 
and level that gets designed will be added to the document. For this reason, design 
documents are often called living documents: They grow as the game grows.

documenting the design process is important for many reasons: Writing down goals 
and vision will help you keep on track during later stages of development. Writing down 
your design decisions during development will prevent you from having to reconsider 
past decisions over and over again. Finally, when working in a team, it is very useful to 
have one document that specifies the collective goal. This reduces the chances that the 
team effort diverges and that you waste too much energy on features that end up being 
incompatible.

For now, we suggest that you do get into the habit of documenting your design by 
whatever method works best for you. You’ll find a longer discussion and some useful 
templates for design documents in Fundamentals of Game Design.

Designing Mechanics early On
Game mechanics are not easy to create. We advise that you start working on your 
game’s mechanics early in the elaboration phase. There are two reasons for this: 

n	 Gameplay emerges from game mechanics. It is difficult, if not impossible, to tell 
whether your gameplay will be fun simply by looking at the rules. The only way to 
find out whether your mechanics work is by playing them or, even better, by having 
somebody else play them for you. To make this possible, you may need to create a 
number of prototypes. We will go into this in more detail in later chapters.

n	 The game mechanics that we focus on in this book are complex systems; game-
play relies on a delicate balance within this system. Once you have mechanics that 
work, it is easy to destroy that balance by adding new features late in the develop-
ment process or by making changes to existing mechanisms.

Once you have the core mechanics working and you are sure they are balanced and 
fun, you can start working on levels and art assets to go with them. 
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make the toy First

Game designer Kyle Gabler gave a video keynote for the first Global Game Jam in 2009. 
in his talk, he gave seven useful tips to help develop a game in a short time span. These 
tips are so useful that we suggest they apply to most game development projects, no 
matter how much time there is. 

One tip, which is very relevant for our discussion here, is make the toy first. Gabler sug-
gests that before you spend any time on creating assets and content, you have to make 
sure that your mechanics work. This means you should start by building a prototype or 
proof of concept for those mechanics. The mechanics should be fun to play around with, 
even without nice art, clear goals, or clever level design. in other words, you need to 
design a toy that is fun to interact with in its own right and build the game from there. 
Obviously, we agree, and we suggest that you follow Gabler’s advice.

You can find Gabler’s full (and witty) keynote online: www.youtube.com/
watch?v=aW6vgW8wc6c.

Getting It Right
As mentioned, to get game mechanics right, you must build them. The methods 
and theory described in this book will help you understand how mechanics work, 
and they will include new, efficient tools to create early prototypes, but they can 
never be a substitute for the real thing. You must build prototypes and iterate as 
much as you can to create games with balanced, novel mechanics.

Prototyping Techniques
A prototype is a preliminary, usually incomplete, model of a product or process  
created to test its usability before building the real thing. Because prototypes don’t 
have to be as polished as the final product, they are (usually) quicker and cheaper 
to construct and modify. Game designers create prototypes of games to test their 
mechanics and gameplay. Some of the more common prototyping techniques that  
game designers use are software prototypes, paper prototypes, and physical prototypes.

A Few Terms
Over the years, software developers have devised a number of terms to describe dif-
ferent types of prototypes. A high-fidelity prototype resembles the intended product 
closely in many ways. In some cases, a high-fidelity prototype ends up being refined 
into the final product. A high-fidelity prototype is relatively time-consuming to build. 

www.youtube.com/watch?v=aW6vgW8wc6c
www.youtube.com/watch?v=aW6vgW8wc6c
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In contrast, a low-fidelity prototype is quicker to build and does not need to resemble  
the end product as closely. A low-fidelity prototype typically uses a different tech-
nology from that used in the end product. You might use a 2D Flash game to 
prototype a 3D console game, or you could even use PowerPoint to create an inter-
active storyboard for a game. Developers build low-fidelity prototypes to test ideas 
quickly, and these prototypes tend to be focused on one particular aspect of the game.

Developers also create a vertical slice of the intended product with their prototype. 
The term comes from a visual representation of a software project, as shown in 
Figure 1.4. A vertical slice is a prototype that includes all the elements (code, art, 
audio, and anything else) required to implement one or a small number of features 
of a game. Vertical slices are useful for testing the moment-by-moment gameplay 
of a game and to give people an impression of your game while not showing the 
complete product. A horizontal slice is a prototype that includes all the parts of some 
aspect of the game but none of the others. For example, a horizontal slice might 
include a complete user interface but no functioning mechanics.

Software Prototyping
If you want to get a sense of how your video game will feel to your players, the best 
way is to create a software prototype that approximates your designs, as quickly 
as possible. To speed the prototyping process, it sometimes is a good idea to use 

FIGURe 1.4
vertical and horizontal slices 
of a game project
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open-source game engines or game development environments such as GameMaker
or Unity, even if your target platform will be something completely different. 

The advantage of using software prototypes is that you can get a good indication 
of the gameplay of your game, even if the art is only temporary and the features 
might be buggy or incomplete. However, the disadvantage is that creating software 
prototypes takes longer than creating the other kinds. Depending on the available 
options and the skills of your development team, it might take almost as long as 
making the real game. Still, it is a good idea to build software prototypes, even if 
you end up throwing away all the art and code that was produced for them. Having 
an early software prototype will help keep the project on course. Programmers will 
know what type of game elements are needed, level designers will have an idea of 
the direction the design takes, and game designers will have an environment to play 
around in and test ideas. Software prototypes function almost as design documents: 
The development team can refer to the prototype when building the real thing. The 
prototype can illustrate some aspects of a game, such as interactive features, better 
than a description in words can.

One critical factor of a successful software prototype is easy customization of the 
game within the prototype. When a game’s gravity is vital for the gameplay of your 
3D platformer, make sure designers can change the setting easily during play in 
order to get a feel for what works best. If you have a factory producing resources for 
a real-time strategy game, make sure you can change the production rate easily in 
order to find the right balance quickly. Don’t waste time creating a fancy user inter-
face for this; store key initial values in a text file that the program reads when it 
starts up. This way, the designers can play with the values simply by editing the file 
and rerunning the program. Or even better, include a simple, off-the-shelf console 
in your game that allows you to make changes while playing the game. This will 
speed up your development-test cycle even more. 

Paper Prototyping
Because software prototypes are relatively slow and expensive to create, more and 
more game studios are using paper prototyping techniques. A paper prototype is a 
noncomputerized, tabletop game that resembles your game. Some game mechanics 
are media-independent. If your game does not rely too heavily on precise timing, 
physics, or other computation-intensive mechanics, you should be able to create a 
board game from your video game concept. If your game does rely heavily on com-
putation-intensive mechanics, it can still be worth your time and effort to create a 
paper prototype for those aspects of the game that don’t. Remember, a prototype 
typically zooms in on a particular aspect of the game, and you just might want to 
zoom in on the internal economy of a game that otherwise derives most of its game-
play from its extended physics simulation. It’s important to know what aspect you 
want to explore before you start designing a paper prototype.

T IP many of the  
prototypes for Spore
are published online: 
www.spore.com/comm/
prototypes. We suggest 
you download a few 
and play them for your-
self. These prototypes 
will give you an unique 
insight in the devel-
opment process for a 
triple-a title by a pro-
fessional game studio.

www.spore.com/comm/prototypes
www.spore.com/comm/prototypes
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Paper prototyping is not trivial. Designing good board games is an art in itself, at 
least as difficult as designing a good video game. It helps if you are familiar with a 
wide variety of board games yourself. There are many more board game mechanics 
than “role a die and move that many spaces.” 

a Good paper prototypinG kit

corvus elrod, a professional game designer, recommends keeping the following items 
together to use as a prototyping kit:

•   Two near-identical decks of cards with different colored backs.

•   A small notebook (not too big or it becomes distracting). Good pencils or pens, obviously.

•   Tokens of some sort—poker chips, Go stones, or similar.

•   Several dice; it doesn’t really matter how many sides they have, and you don’t need 
a large number. if you design your mechanics using percentages, then two ten-sided 
dice are useful for generating random numbers from 1 to 100 (elrod 2011).

To this we might also add the following:

•   A pad of sticky notes

•   A batch of blank cards, 3x5 or similar

We also recommend you add some card sleeves to your paper prototyping kit. card 
sleeves are plastic sleeves that players sometimes use to protect cards for trading card 
games such as Magic: The Gathering. They can be purchased from any specialist game 
store. You can simply slide a marked piece of paper into the sleeve to create a playing 
card that is easy to shuffle and handle. an additional benefit is that you can easily slide 
in revisions on top of old cards. That way, the design history of your cards is preserved.

With these items, you have a way of generating random numbers, some tokens you can 
use to represent the numbers (in a poker game, poker chips stand for money), some 
blank materials for designating all sorts of things, possibly including a game board, and 
a notebook to write down your ideas in. That’s really all you need to get started. 

Paper prototyping has two important advantages: It is fast, and a paper prototype 
is inherently customizable. Paper prototypes are quick to make because they do 
not need to be programmed. When creating a paper prototype, you should not 
waste time on creating nice art for cards or boards; instead, you should spend your 
time drafting rules and testing them. With some skill and experience, you can put 
together a decent paper prototype for any game in a matter of hours. That leaves 
you a lot of time to start playtesting and balancing the mechanics. 

With a paper prototype, it is easy to change the rules. You can even do this on 
the fly. If during play you notice something does not work as intended, change it 
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immediately. This way, you can almost create the game as you play. Iteration cycles 
do not get shorter than this.

Paper prototyping has two disadvantages: It is more difficult to involve test play-
ers, and not all mechanics translate to board games easily. If you are going to test a 
paper prototype with new players, you will need to explain the rules to them your-
self—it’s not worth the time to write them down, because you’ll be changing them 
all the time. In addition, test players, especially if they have little testing or board 
game experience, might find it difficult to see how your paper prototype is related to 
a video game. 

More problematic is that not all mechanics translate to paper prototypes easily. As 
we mentioned, mechanics that deal with a game’s physics are difficult to translate. 
Continuous mechanics, which are computationally intensive, really need to be 
implemented on a computer. This is something to take into account when creating  
a paper prototype: It is best used to test discrete mechanics. Paper prototyping is 
more suited to designing mechanics that govern a game’s economy or progression.

Physical Prototyping
Prototyping is not restricted to creating software or paper games; simply drafting 
rules and playing the game out in real life can be just as effective. This is especially 
true when a game has many continuous, physical mechanics. Running around an 
office building armed with laser-tag guns can give you a fairly good idea of what a 
first-person shooter game might feel like. Most of the time, this requires even less 
preparation than paper prototyping. As with paper prototyping, physical prototyp-
ing is fast and adaptable. Some game designers mix physical and paper prototyping 
techniques to great effect. However, again as with paper prototyping, physical pro-
totyping is not easy: Getting it right requires some skill and expertise from both 
designers and players. 

Prototype Focus
Apart from choosing the appropriate medium for your prototype, another critical 
aspect of effective prototyping is finding the right focus. Before you start building  
a prototype, you must ask yourself what you intend to learn from the exercise. If 
you are trying to find out something about the balance of the economy, you will 
need a different prototype from one intended to test a new user interface. Look  
at the prototypes of Spore (www.spore.com/comm/prototypes). Each was created for a 
specific reason.

Choosing a single focus should help you create prototypes faster. If you are focusing 
on one aspect, you do not have to prototype the entire game. A tight focus should 
also help you get the right feedback from test players: They will be less distracted by 
features (or bugs) that are unrelated to the issue you are studying.

T IP To appreciate the 
opportunities offered  
by physical prototyping, 
it can be a good idea  
to join (or observe) a 
live-action role-play 
(LarP) session. LarPers 
employ a wide variety 
of techniques to deal 
with physical combat 
safely and have come 
up with ways to include 
things that are not part 
of our physical reality, 
such as magic spells. 
Because LarP takes 
place in a specific loca-
tion, you will have to 
find a LarP community 
near you. The website 
http://larp.meetup.com 
lists a few.

www.spore.com/comm/prototypes
http://larp.meetup.com


ptg8274339

20 Game mechanics: advanced Game desiGn

A prototype’s focus affects the choice of prototype technique. If you are trying to 
design a balanced economy of power-ups in a physical platform game, a paper 
prototype can work even though physics are hard to reproduce as a board game. 
However, if you are trying control schemes with a new input device, you will need a 
high-fidelity, software prototype that is close to the real game.

The following aspects of game design are typical focuses for prototyping, loosely 
ordered from early to later prototypes:

n	 Tech demos. It is always a good idea to make sure you or the team of program-
mers can actually deal with the technology involved. For a tech demo, you should 
try to tackle the most difficult and most novel aspect of the game technology and 
prove to yourself, and ideally a publisher too, that you can build the game. Tech 
demos should be built early to prevent surprises during later stages of development. 
While building a tech demo, keep an eye out for interesting gameplay opportu-
nities. Especially when you are working with novel technology, quickly building 
something simple can lead to deeper insights later.

n	 Game economy. A game’s economy revolves around a number of vital resources. 
You can prototype a game economy with low-fidelity, paper prototyping techniques; 
this is best done early during the design process. The following are typical playtest  
questions: Is the game balanced? Is there a dominant strategy that wins all the time? 
Do the players have interesting choices? Can they sufficiently forsee the consequences 
of their choices? Getting the right players for a game economy playtest is impor-
tant. You and your team are good test subjects, although you will be handicapped 
because you have an idea of how the game is intended to be played. In general, the 
ideal test player for this type of prototype is an experienced power gamer who can 
quickly grasp the mechanics and has experience in finding and using exploits. Make 
sure you ask them to try to break the game. If it can be broken, you should know.

n	 Interface and control scheme. To find out whether players can control your 
game, you must have a software prototype of your game. The prototype does not 
need to have much content or complete levels; rather, it is a playground where play-
ers can try most of the game’s elements and interactions. These are typical playtest 
questions: Can players perform the actions you offer them correctly? Are there other 
actions they want or need? Are you giving them the information they need to make 
correct decisions? Is the control scheme intuitive? Do the players have the informa-
tion they need to play? Do they notice they are taking damage or that a vital game 
state has changed?
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n	 Tutorials. To build a good tutorial, the game must be in its later stage of devel-
opment. After all, nobody wants to waste time and resources to build a tutorial for 
game mechanics that still might change. When testing a tutorial, it is important 
your test players have not seen your game before. In many ways, developing a game 
is like a long and detailed tutorial: Developers spend many hours tweaking mechan-
ics, and during this time, they play a lot. It is easy to forget how skilled you have 
become at your own game. Therefore, you cannot trust your own judgment of the 
game’s initial difficulty and learning curve. You really need new players for that, and 
while they play, do not interfere with their learning process. The most important 
question for a tutorial prototype is this: Do my players understand the game and 
how it should be played?

reFerence Games: Free prototypes

sometimes the most efficient way to prototype your game is to look at existing games 
and use them as a model for your project. This way, you can take advantage of a lot of 
work done by others. This is especially true of user interface design, controls, and basic 
physics, in which players want consistency from game to game. There’s no point in 
changing the traditional Wasd control scheme for first-person Pc games to esdF instead, 
just for the sake of innovation.

Obviously, you should not steal designs, but there is no harm in learning from others or 
avoiding mistakes they made. When picking reference games for your project, pay atten-
tion to the project scope. if you have only a couple of months to develop your game, don’t 
pick a reference game that was created by a large professional team over a period of 
years. Try to choose reference games that are similar in size and quality to the game you 
plan to make, unless you are using the reference only to study a particular detail in the 
game interface or mechanics.

Summary
Game mechanics are the precisely specified rules of a game, including not only 
the entities and processes at the heart of the game but also the data necessary to 
execute those processes. Mechanics may be categorized as continuous or discrete. 
Continuous mechanics are usually implemented in real time, with many floating-
point calculations every second, and are most often used to implement physics in a 
game. Discrete mechanics may or may not operate in real time, and they use integer 
values to implement a game’s internal economy. It is imperative to begin designing 
game mechanics early, so you can create prototypes to playtest.
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Particular structures exist in game mechanics that contribute strongly to emergent 
gameplay. In the following two chapters, we will explore this structural perspective 
on game mechanics in more detail, and we will use that perspective to create a prac-
tical method and design tool to help design game mechanics.

Exercises
1. Practice your prototype skills. Translate an existing video game to a paper 
prototype.

2. Find a relevant reference game for a game that you want to build. Explain what 
aspect of the reference game is useful in illustrating the kind of game you have  
in mind.

3. Find examples of discrete mechanisms and continuous mechanisms in a pub-
lished game for each of the five types of game mechanism described in this chapter 
(physics, internal economy, progression, tactical maneuvering, and social interac-
tion). Don’t use any of the examples given in this chapter.
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Emergence and 
progression
In the previous chapter, we introduced five types of game mechanics: physics, inter-
nal economy, progression, tactical maneuvering, and social interaction. Of these 
categories, the mechanics of progression create what in game studies are called 
games of progression. The other four types of mechanics correspond fairly well to 
another category, games of emergence. For ease of reference, we will call the other 
four types of mechanics mechanics of emergence in this chapter. 

The two categories of games of emergence and games of progression are considered 
important, alternative ways of creating gameplay. In this chapter, we explore this 
important distinction in more detail and provide examples of each category. We also 
explore the structural differences in the mechanics that generate emergence and 
progression and the problems and opportunities they create when a designer tries  
to integrate emergence and progression in a single game.

The History of Emergence and Progression
The categories of emergence and progression were originally introduced by game 
scholar Jesper Juul in his paper “The Open and the Closed: Games of Emergence and 
Games of Progression” (2002). Put simply, games of emergence are those games that 
have relatively simple rules but much variation. We use the term emergence because 
the game’s challenges and its flow of events are not planned in advance but emerge 
during play. Emergence is produced by the many possible combinations of rules 
in board games, card games, strategy games, and some action games. According 
to Juul, “Emergence is the primordial game structure” (p. 324); that is, the earliest 
games were games of emergence, and in creating a new game, many people begin 
with emergent designs.

Games of this type can be in many different configurations, or states, during play. 
All possible arrangements of the playing pieces in chess constitute different game 
states, because the displacement of a single pawn by even one square can make a 
critical difference. The number of possible combinations of pieces on a chess board 
is huge, yet the rules easily fit on a single page. Something similar can be said of the 
placements of residential zones in the simulation game SimCity or the placement of 
units in the strategy game StarCraft.

23
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emerGence and proGression outside Video Games

in Juul’s categorization, all board games are games of emergence. Games that start with 
randomized elements, such as cards or dominoes, also qualify. such games typically 
have a small number of pieces and little or no predesigned data. The text on Monopoly’s 
chance and community chest cards are examples of predesigned data, but they require 
less than 1KB to store.

a game of progression requires a large amount of data, prepared in advance by the 
designer, that the player can access at arbitrary points (called random access). This is  
inconvenient for board games but easy for video games now that they can store many 
gigabytes of data. Progression is the newer structure, starting with the text-adventure 
games from the 1970s. however, progression is not limited to games running on computers. 
Pen-and-paper role-playing games like Dungeons & Dragons offer published scenarios, 
and these scenarios also constitute games of progression, as do the books in the choose 
Your Own adventure book series. Books are another medium that can handle a large 
amount of data and offer easy random access.

In contrast, games of progression offer many predesigned challenges that the 
designer has ordered sequentially, usually through sophisticated level design. 
Progression relies on a tightly controlled sequence of events. A game designer dic-
tates the challenges that a player encounters by designing levels in such a way that 
the player must encounter these events in a particular sequence. According to Juul, 
any game that has a walkthrough is a game of progression. In its most extreme 
form, the player is “railroaded” through a game, going from one challenge to the 
next or failing in the attempt. In a game of progression, the number of game states 
is relatively small, and the designer has total control over what is put in the game. 
This makes games of progression well suited to games that tell stories. 

Comparing Emergence and Progression
In his original article, Juul expresses a preference for games that include emergence: 
“On a theoretical level, emergence is the more interesting structure” (2002, p. 328). 
He regards emergence as an approach that allows designers to create games in which 
the freedom of the player is balanced with the control of the designer. In a game of 
emergence, designers do not specify every event in detail before the game is pub-
lished, though the rules may make certain events very likely. In practice, however, 
a game with an emergent structure often still follows fairly regular patterns. Juul 
discusses the gun fights that almost always erupt in a game of Counter-Strike (p. 327). 
Another example can be found in Risk, in which the players’ territories are initially 
scattered all over the map, but over the course of play their ownership changes, and  
the players generally end up controlling one or a few areas of neighboring territories. 

T IP don’t confuse  
the term games of 
progression with other 
ideas about progres-
sion in games, such as 
leveling up, difficulty 
curves, skill trees, and 
so on. We use Juul’s 
definition of the term: 
a game of progression 
is one that offers pre-
designed challenges, 
each of which often has 
exactly one solution, in 
a fixed (or only slightly 
variable) sequence.
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data and process intensity

The game designer chris crawford’s notions of process intensity and data intensity apply 
to progression and emergence in games. computers differ from most other gaming media 
because computers are good at processing numbers. computers also allow fast access 
to random locations within a large database, an ability put to good use within games 
of progression. But it is the ability to create new content on the fly and handle complex 
simulations where computers really shine. Like no other medium before, computers have 
the capacity to surprise players and designers with clever simulations and emergent 
gameplay. crawford believes games should capitalize on this ability of the computer: 
Games should be process-intensive, rather than data-intensive. he says that video games 
should be games of emergence rather than games of progression.

In his later book Half-Real, Juul is more nuanced in his discussion of emergence and 
progression (2005). Most modern video games are hybrids; they include some fea-
tures of both. Grand Theft Auto: San Andreas provides a vast open world but also has 
a mission structure that introduces new elements and unlocks this world piece by 
piece. In the story-driven first-person shooter game Deus Ex, the storyline dictates 
where the player needs to go next, but players have many different strategies and 
tactics available to deal with the problems they encounter on the way. It is possi-
ble to write a walkthrough for Deus Ex, which would make it a game of progression 
according to Juul’s classification, but there are many possible walkthroughs for Deus 
Ex—just as, at least in theory, it is possible to create a walkthrough for a particular 
map in SimCity, instructing the player to build certain zones or infrastructure at a 
particular time in order to build an effective city. It would be hard to follow such a 
walkthrough, but creating one is possible. 

Emergence is not better than progression. They are simply different. Pure games of 
emergence and pure games of progression represent two extremes on a bipolar scale. 
Many casual games, such as Bejeweled, are pure games of emergence. Pure games 
of progression are fairly rare. The most typical examples are adventure games such 
as The Longest Journey, but they are no longer the dominant genre they once were. 
Other games include elements of both, often by exhibiting emergent behavior  
within a given level but offering their levels in a strict sequence from which the 
player cannot depart (progressive behavior). Today, action-adventure games such 
as Half-Life and the Legend of Zelda series are much more common than traditional 
adventure games: Action-adventures include some form of emergent action as part 
of the gameplay. Among large games, hybrid forms are the most popular.
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Games of Emergence
The use of the term emergence in games, which predates Juul’s categories, originates 
from the use of the term in complexity theory. There it refers to behavior of a system 
that cannot be derived (directly) from its constituent parts. At the same time, Juul 
cautions us not to confuse emergent behavior with games that display behavior the 
designer simply did not foresee (2002). In games, as in any complex system, the 
whole is more than the sum of its parts. Go and chess are famous for generating 
enormous depth of play with relatively simple elements and rules. Something similar  
can be said of relatively simple computer games such as Tetris, Boulder Dash, or World 
of Goo. These games consist of relatively simple parts, yet the number of strategies  
and approaches that they allow is enormous. No two play-throughs will feel the 
same. The emergent quality of the gameplay comes not from the complexity of 
individual parts but from the complexity that is the result of the many interactions 
among the parts.

Simple Parts in Complex Systems
The science of complexity studies all manner of complex systems in real life. While 
the active agents or active elements in these complex systems can be quite sophisti-
cated in themselves, they are typically simulated with simple models. For example, 
to study the flow of pedestrians in different environments, great results have been 
achieved by simulating pedestrians with only a few behavioral rules and goals (Ball, 
2004, pp. 131–147). In this book, we take a similar approach to games. Although 
it is possible to create emergent games with a few complex elements, we are more 
interested in the mechanics of game systems that work with simple parts but still 
create emergent gameplay. The advantage of our approach is that, in the end, these 
games are efficient to build, even if they are initially more difficult to understand.

probability space

in the previous chapter, we mentioned that games are often regarded as state machines: 
hypothetical machines that progress from one state to another based on their current 
state and the input provided by players. in games, the number of states can grow very 
fast, and yet not every state is possible. not every random placement of pieces on a chess 
board represents a game state that can be reached through actual play. For example, it 
is not possible to have pawns in your color on the row closest to you in a real game or 
to have both your bishops on a square of the same color. When the number of possible 
states is very large, game scholars refer to them collectively as a probability space. The 
probability space represents all the possible states that can be reached from the current 
state. The probability space can be described as having a wide or a deep shape. When 
the shape of the space is wide, there are many different states that can be reached from 
the current state: Usually this means that players have many options. if the shape is 
deep, there are many different states that can be reached after many subsequent choices. 
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C. E. Shannon, in his early paper “Programming a Computer for Playing Chess,” 
estimated that there are more possible game states in games like chess and Go than 
there are atoms on earth (1950). The rules of the game determine the number of 
possible states, but it is not necessarily true that more rules will lead to more pos-
sible states. In addition, when a game can create a large number of possible states 
without using many rules, the game will be more accessible to players.

Gameplay and Game States
When we speak of the path players take through the possible states of a game—its 
probability space—we sometimes describe this path as a trajectory. The possible game 
states and play trajectories through a game are emergent properties of the game 
rule system. Games that allow many different, interesting trajectories arguably have 
more gameplay than games that generate fewer trajectories or less interesting ones. 
However, determining the type and quality of the gameplay is hard, if not impos-
sible, by simply looking at the rules. Comparing the rules of tic-tac-toe and Connect 
Four serves as a good illustration of these difficulties. The rules for tic-tac-toe are  
as follows:

1. The game is played on a three-by-three grid.

2. The players take turns to occupy a square.

3. A square can be occupied only once.

4. The first player to occupy three squares in a row (orthogonally or diagonally) wins.

The rules for Connect Four are as follows (with the differences emphasized):

1. The game is played on a seven-by-six grid.

2. The players take turns to occupy a square.

3. A square can be occupied only once.

4. Only the bottom most unoccupied square in a given column can be occupied.

5. The first player to occupy four squares in a row (orthogonally or diagonally) wins.

While there are only a few differences in the rules for these two games, the differ-
ences in gameplay are immense, much greater than the amount of mental effort 
needed to understand the rules. In the commercially available version of Connect 
Four, the most complicated rule (number 4) is enforced by gravity: A player’s token 
will automatically fall to the lowest available space in the upright playing area (see 
Figure 2.1). This relieves players from manually enforcing this rule and allows them 
to focus on the rule’s effects instead. Despite the small difference in the complexity  
of the rules, tic-tac-toe is suited only for small children, whereas Connect Four can 
also be enjoyed by adults. The latter game allows many different strategies, and 
it takes much longer to master the game. When two experienced players play the 
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game, it will be an exciting match, instead of a certain draw as is the case with  
tic-tac-toe. It is hard to explain these differences just by looking at the differences  
in the rules.

example: Civilization
Sid Meier’s Civilization is a good example of a game of emergence. In Civilization, 
you lead a civilization as it evolves over roughly six millennia. During the game, 
you build cities, roads, farmlands, mines, and military units. You need to upgrade 
your cities by building temples, barracks, courthouses, stock markets, and so on. 
Cities produce money that you use to research new technology, to convert into 
luxuries to keep the population happy, or to speed up the production of units and 
upgrades. Civilization is a turn-based game set on a tile-based map, with each turn 
representing a number of years of your civilization’s history. The choices you make 
determine how fast your civilization will grow, how sophisticated its technology is, 
and how powerful its military. Several other computer-controlled civilizations com-
pete with you for space and resources on a finite map.

Civilization is a large game with many different game elements. However, the indi-
vidual elements are surprisingly simple. The mechanics for city upgrades can easily 
be expressed with a few simple rules. For example, a temple costs one gold per turn 
and will reduce the number of unhappy citizens in a city by two. Units have simple 

FIGURe 2.1
in Connect Four,  
gravity makes sure 
players can occupy 
only the bottom most 
unoccupied square  
in each column.  
(image by permission  
of Wikimedia 
commons contributor 
Popperipopp under  
a creative commons 
3.0 license.)
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integer values representing the number of tiles they can move and their respective 
offensive and defensive strengths. Some units have special capabilities. For example, 
settlers can be used to build new cities, and artillery can be used to bombard enemy 
units from a distance. Terrain modifies the capabilities of units. Mountains cost 
extra movement points to cross but also double a unit’s defensive strength. Players 
can build roads to negate the extra movement costs imposed by mountains.

the mechanics oF Civilization are discrete

inspecting Civilization reveals that most of its mechanics are discrete: The game is turn-
based, the positions of units and locations of cities are restricted to tiles, and offensive 
and defensive strength is represented with whole numbers. Because the mechanics are 
discrete, they are easy to understand individually. You can, in principle, do all of the cal-
culations to work out their effects in your head. still, the probability space of Civilization
is huge. Civilization is an excellent example of creating enormous variety with relatively 
simple discrete mechanics that invite players to interact with the game on a strategic level.

A complete description of all the mechanics of Civilization easily fills a book, espe-
cially if all the details of all unit types and city upgrades are listed. The game comes 
with its own encyclopedia to provide access to all these details. However, all these 
elements are easy to understand. And more importantly, there are many relations 
between the elements: Units are produced in cities, consuming vital resources that 
could have been used toward other ends. After a unit is produced, you will often 
have to pay gold for its upkeep every turn. Building roads also requires an invest-
ment in time and resources, but it allows you to deploy your forces more efficiently, 
which reduces the need to keep a large military. You can also invest in researching 
new technology to make sure your units are stronger than those of your opponent.  
In short, everything in Civilization is connected to almost everything else. This 
means that the choices you make will have many effects, sometimes unforeseen 
ones. Building a strong military early on allows you to capture a larger part of the map 
but will take a toll on other developments, which might set you back in the long 
term. To add to the complexity, the choices made by the civilizations surrounding 
yours will influence the effectiveness of your strategies.

There are many different strategies to play Civilization, and players often have to 
switch between strategies as the game progresses. Early on, it is important to capture   
territory so that your civilization can expand quickly. It also helps to develop tech-
nologies quickly so that you can identify and capture vital resources during this stage.  
Once you encounter other civilizations, you can attack them or befriend them. In 
the early stages of the game, it is easier to conquer other civilizations completely. 
Later in the game this will be much harder, and other strategies work better. When 
your civilization is wealthy and your neighbor is not, you can start a cultural offen-
sive to persuade neighboring cities to join your realm. The game often progresses 
through a number of distinct phases: early expansion, investing in your economy, 
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violent conflict, and eventually a technology and production race to space. The 
Civilization setup causes all these strategies and game phases to emerge quite natu-
rally from its mechanics.

Civilization Gameplay phases Vs. historical periods 
and Golden aGes

in Civilization, your civilization will evolve through a number of historical periods in 
the game. it starts in a classical period and eventually will grow into a medieval period, 
renaissance, and modern period. The game uses these periods to keep the graphics and 
representation of your civilization in tune with your progress. The triggers that cause 
you to move into a new period are rather arbitrary. They don’t emerge from the game 
mechanics as the different strategic phases of exploration, development, and conflict 
do. The historical periods are a fairly superficial addition that provides visual color; they 
aren’t emergent game phases.

a golden age, a mechanism that can trigger a 20-turn span of increased production for 
your civilization, falls somewhere in between a gameplay phase and a historical period. 
The events that trigger a golden age are nearly as arbitrary as the triggers for the histori-
cal periods. however, the player does have more control over these events and can aim 
to trigger a golden age on purpose. Golden ages do not emerge from the gameplay but 
do affect the gameplay phase.

Imagine that you are asked to design the mechanics for a game like Civilization. 
How would you approach that task? You will probably have to design and tune the 
mechanics over many different iterations and prototypes. If you are clever, you keep 
all the elements as simple as possible, but you create several relationships among 
them. In that way, you can be sure that the game will be complex, but that is little 
guarantee that interesting gameplay will emerge. To get it right, you will need to be 
aware of the structure of these mechanics. Some structures will cause more emergent 
behavior than others. Structures like feedback loops in the game mechanics are a 
good way of creating emergent behaviors, especially if this feedback operates on dif-
ferent scales and at different speeds. Right now, this will probably sound somewhat 
vague. In this and later chapters, we will explore these structures and feedback in 
much more detail. 

Games of Progression
Despite the importance of emergence in games, no professional game designer can  
ignore the mechanics of progression. Many games contain a story to drive the game-
play, often told over the course of many levels. Individual levels typically have clearly 
defined missions that set the player’s goals and structure the tasks they must com-
plete to finish the level. The designer should plan the game and its levels in such 
a way that the game creates a coherent experience for the player. Often this means 

NOT E We use the 
word structures to refer 
to the various ways that 
a game designer can 
set up game mechanics 
to influence or control 
one another. a feed- 
back loop is a structure, 
for example, and so is 
a trigger that sets off 
an event when certain 
conditions are met.
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that designers use various mechanics to control how players can move through a 
game. In this book, we call such mechanics mechanics of progression. Understanding 
the mechanics of progression is key to designing games with great levels and games 
with interesting interactive stories.

an academic battle

The topic of stories and games has been the subject of fierce debates between two dif-
ferent camps within the field of game studies. One camp, the narratologists, put games 
in the tradition of other storytelling media, and they focus on the storytelling aspects of 
games. The other camp, the ludologists, argue that to understand games you should start 
by looking at the game mechanics and the gameplay first and foremost. For the ludolo-
gists, game stories are not an integral part of games. Angry Birds is a good example. 
The game has a story, but the story is told only between levels, and the events within a 
level aren’t part of it. The story and the gameplay have no effect on one another. in the 
case of Angry Birds, the ludologists are right, but there are also games that make an 
effort to integrate their gameplay with their stories—role-playing and adventure games, 
in particular. When we talk about storytelling in games, we mean integrated stories that 
provide more than just a superficial context for the gameplay.

The mechanics of progression are an important aspect of designing game levels. 
They are a key instrument for the designer to dictate what game elements players 
will encounter first, what resources they will start with, and what tasks they must 
perform to proceed. As a game designer, you decide what abilities the player has, 
and use the layout of a level, including the clever placement of locks, keys, and vital 
power-ups, to control the player’s progress through the game. This way, players are 
eased into the game. As players explore the game’s space and gain abilities and skill, 
they will eventually have a storylike experience that consists of the events that take 
place in the level, clues discovered throughout the game, or cut-scenes that are trig-
gered at certain locations.

Tutorials
Game designers apply the mechanics of progression to create tutorials and level 
designs to train the player in the skills necessary to complete a game. These days, 
the number of rules, interface elements, and gameplay options of a modern retail 
video game is usually larger than most players can grasp at once. Even smaller games 
found on the Internet frequently require the player to learn a multitude of rules, to 
recognize many different objects, and to try different strategies. Exposing a player to   
all these at the same time can result in an overwhelming experience, and players will  
quickly leave the game in favor of others. The best way to deal with these problems 
is to design the levels in a way that teaches the player the rules in easy-to-handle 
chunks. In early tutorial levels, players are allowed to experiment with the gameplay 
options in a safe and controlled environment, where errors have few consequences.
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narratiVe architecture

Using tutorials and level design to train the player illustrates one of the strengths of video 
games: They can use the game’s simulated physical space to structure player experience. 
Unlike literature or cinema, which are well suited to depict events in time, games are 
well suited to depict space. in his paper “Game design as narrative architecture” (2004), 
henry Jenkins calls this type of spatial storytelling technique narrative architecture and 
places games in the tradition of spatial stories, an honor they share with traditional 
myths and heroes’ quests as well as modern works by J.r.r. Tolkien (2004). simply by 
traveling through the game space, a story is told. 

Storytelling in Games
Many games have used storytelling to great effect. The Half-Life series stands out 
as a particularly good example. The games from this series are first-person shooter 
action games in which the player traverses a virtual world that seems to be vast but 
which in reality is confined to a narrow path. The whole story of Half-Life is told 
within the game. There are no cut-scenes that take the player out of the game, all 
dialogue is performed by characters inside the game, and the player can choose to 
listen or ignore them altogether. Half-Life has perfected the art of guiding the player 
through the game, creating a well-structured experience for him. The practice is 
often referred to as railroading; in this light, it is probably no coincidence that in 
Half-Life and Half-Life 2 the player arrives on a train (see Figure 2.2). The disadvan-
tage of railroading is that the player’s freedom is mostly an illusion. When players 
go in a direction that was not intended by the game, the illusion can break down 
very quickly. It takes a lot of design skill to prevent players from noticing the invis-
ible boundaries that prevent the player from exploring in other directions.

Creating interactive stories for games is not easy. Traditional techniques such as using 
branching story trees have proven inefficient. You have to create a lot of content the 
player will not experience in a single play-through. Creating vast open worlds for 
the player to explore, as is often the case in many of the Elder Scrolls games, offers 
much freedom to the player but often means that the players lose track of the main 
storyline altogether. To create a coherent, storylike game, a delicate balance between 
offering players freedom and restricting their freedom through the design of your 
levels is required.
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example: The Legend of Zelda
Almost all the games and levels in the Legend of Zelda series are good examples 
of games of progression. To give a detailed example of how progression works in 
games, let’s examine the Forest Temple level in The Legend of Zelda: Twilight Princess. 
In this level, the player, controlling the game’s main character Link, sets out to 
rescue eight monkeys from an evil presence that has infested an old temple in 
the forest. The mission consists of the player freeing eight monkeys, defeating the 
mini-boss (the misguided monkey king Ook), and finding and mastering the “gale 
boomerang” before finally defeating the level boss (the Twilit Parasite Diababa). 
Figure 2.3 displays the Forest Temple level map. Figure 2.4 summarizes the player’s 
tasks and their interrelation in a graph. To reach the goal, Link needs to confront 
the level boss in a final fight. To get to that fight, Link must find a key and rescue 
four monkeys, for which he needs the gale boomerang, for which he needs to defeat 
the monkey king, and so on. Some tasks can be executed in a different order: It does 
not really matter in what order Link liberates the monkeys. Other tasks are optional 
but lead to useful rewards.

FIGURe 2.2
in Half-Life 2 the player 
arrives in the game by 
train but never leaves 
the rails.
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FIGURe 2.3
a map of the  
Forest Temple

FIGURe 2.4
a graph of the forest 
temple mission
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Zelda is not a pure Game oF proGression

all games in the Legend of Zelda series combine mechanics of progression with emer-
gent gameplay. combat, for example, features a lot of emergent mechanics in which 
the players must learn and master many different fighting techniques and discover for 
themselves which strategy works best against what enemy. as already noted, pure games 
of progression are quite rare these days. however, the Legend of Zelda games do include 
strong mechanics of progression: They have cleverly designed levels and a long story line 
to structure the gameplay experience. as such, it is a prime example of progression in 
games.

The mission structure for the Forest Temple level has a few striking features. One 
is the bottleneck formed by the fight with the mini-boss and the retrieval of the 
boomerang halfway through the mission and the two sections of parallel options 
before and after the bottleneck. The game space features a hub-and-spoke layout 
(see the “Hub-and-Spoke Layout in Zelda Games” sidebar) that supports the parallel 
tasks of the mission structure. From the central hall (where the big spider is fought), 
the player can go in three directions. The pathway that leads to the right quickly 
branches into three more pathways. Three pathways lead to captured monkeys and 
one to the mini-boss. The last pathway is open to Link only after he has freed the 
first four monkeys. After the player has retrieved the gale boomerang, he can reach 
additional spaces in the first hub-and-spoke structure and a new hub.

hub-and-spoke layout in Zelda Games

The dungeons of Zelda games are frequently arranged in a hub-and-spoke layout. One 
central room in the dungeon acts as a hub. From this location the player can venture 
into different parts of the dungeon: the spokes. Players frequently return to the hub after 
completing a particular task in a spoke. The advantages of a hub-and-spoke layout are 
that it lets players choose which tasks to complete first (and lets them choose a new one 
if the first one they try is too difficult), and hubs are good locations for save points or 
dungeon entrances. Using a hub-and-spoke layout minimizes backtracking through areas 
players have already seen. For a more detailed discussion on the hub-and-spoke layout 
technique, refer to chapter 12 of Fundamentals of Game Design.

The gale boomerang itself is a good example of the lock and key mechanisms typical   
of the series. This is used in many action-adventure games, as Ashmore and Nietsche 
observed in their paper “The Quest in a Generated World” (2007). Lock and key 
mechanisms are one way to translate strong prerequisites in a mission into spatial 
constructions that enforce the relationships between tasks. The boomerang is both a 
weapon and a key that can be used in different ways. It has the capability to activate   
switches operated by wind. Link needs to operate these switches to control a few 
turning bridges to give him access to new areas. To get to the master key that unlocks 
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the door to the final room with the level boss, he must use the boomerang to activate 
four switches in the correct order. At the same time, the boomerang can be used to 
collect distant objects (it has the power to pick up small items and creatures) and 
can be used as a weapon. This allows the designer to place elements of the second 
half of the mission (after the mini-boss has been defeated) in the same space that is 
used for the first half of the mission. This means players will initially run into obsta-
cles they cannot overcome until they have found the right key—the boomerang.

discrete mechanics in Zelda Games

Zelda games mix discrete mechanics with continuous mechanics for physics. space in 
Zelda is continuous, as are most physical challenges. however, a great many mechanics 
in Zelda are discrete. The hearts on the health bar and the damage done by Link and his 
enemies are discrete: a particular enemy will always cause the same damage to you, and 
you will be able to defeat that enemy with a constant number of hits with your sword. 
Likewise, the mechanics controlling progression are all discrete as well. You require a 
small key to unlock a door, a particular number of monkeys to help you past a gap, and 
so on.

Using this particular layout and lock and key elements, the Forest Temple level in 
The Legend of Zelda: Twilight Princess is structured to generate play trajectories that 
feel like heroic tales. When Link enters the temple, he receives a challenge to adven-
ture as he finds the first of eight monkeys he needs to liberate. Shortly after this, he 
encounters a large spider guarding the first hub in the level. Defeating this spider 
grants access to many locations in the first part of the level. What follows are many 
tests and obstacles, during which the hero Link meets new friends and enemies. 
Halfway through the level, Link confronts the monkey king, but there is a twist in 
the plot as he discovers that the monkey king is not his major adversary after all. He 
escapes with a magic item, the gale boomerang, which unlocks the second part of 
the dungeon and helps him defeat his real adversary in a final climactic battle. Just 
as the same structure—the hero’s journey—never seems to grow stale for fairy tales 
and adventure films, this structure can be found in many of Link’s adventures and 
in many other games as well.

Each enemy, trigger, or lock serves as a simple mechanism to control access to the 
next part of the story. Designing games of progression involves careful planning. 
Remember that the physical layout of your level and the location of key items inside 
it are your most important tools to control how players progress. You should use 
these elements to create a smooth and coherent experience for the players. At the 
same time, you must make sure that your players have had a chance to learn and 
practice the skills required to complete a level, but most of all make sure that they 
enjoy their own progress by letting them overcome obstacles that they were initially 
unable to defeat.

NOT E We do not  
have space to discuss 
the hero’s journey 
story-pattern in more 
detail here, but there 
are many resources  
to guide you if you are 
interested in learning  
more about it. One  
of the more popular 
works is christopher 
vogler’s book, The 
Writer’s Journey:  
Mythic Structure for 
Writers (1998).
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Structural Differences
To understand the difference between progression and emergence a little better, 
let’s look at the structure of the mechanics that create the two different types of 
gameplay. Games of emergence are characterized by only a few rules. In a game of 
emergence, complexity is created by many connections and interactions between the 
rules, rather than large numbers of rules. What is interesting with this type of game 
is that the complexity of the gameplay leaps up after reaching a certain point in 
the complexity of the rules. We already saw a similar jump in gameplay complexity 
in the discussion of tic-tac-toe and Connect Four. Figure 2.5 illustrates that turning 
point, which we refer to as the complexity barrier. Beyond a certain point, interac-
tions among the rules create an effect that is sometimes called the explosion of the 
probability space. In general, mechanisms that contribute to emergence in games add 
many different possible states to the game. Large probability spaces make games 
more replayable; as a player, you can be confident no two games will be exactly 
alike. This adds to a game’s appeal, especially if the outcome of each play-through is 
as unpredictable as the first. 

Games of progression usually possess many rules but far fewer interactions among 
the rules. The mechanics that control player progress through a level hardly inter-
act with similar mechanisms in the game. Many of the mechanisms serve a single 
purpose: to keep players from reaching a certain place until they have accomplished 
some other task first. In effect, these mechanisms can be in one of two simple states: 
A door can be open or closed, a key can be found or not. Mechanisms that contrib-
ute to progression rarely add many different states to the game, but they are easily 
controlled by the game designer. The advantage of progression is that the designer 
can dictate the order in which players will face challenges and learn skills and can 

FIGURe 2.5
The complexity barrier 
is the region between 
the two dotted lines. 
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integrate constantly increasing challenges into an overarching story line. The over-
all experience is much easier to design in a game of progression than it is in a game 
of emergence.

The shape of the probability space generated by typical mechanics of emergence and 
mechanics of progression is quite different. Games of emergence have a probability 
space that is large and wide, because the game presents players with many options, 
and the game’s direction is often subject to factors outside the player’s direct control 
(such as die-rolling). In contrast, the probability space of games of progression tends 
to be small but deep. For a designer, it is easier to create a sequence of many game-
play choices—but with fewer options at each decision point—and still have a good 
idea of, and control over, the possible outcomes. This is why games of progression 
are usually longer than games of emergence and can deliver coherent stories. Games 
of emergence, such as checkers, tend to be shorter. In a long game of emergence, 
you run the risk that the player will make a small mistake early on that makes the 
game unwinnable hours later—a design flaw. X-COM: UFO Defense, although an 
excellent game in many respects, exhibited this property.

The mechanics of emergence are efficient at creating a large probability space. The 
mechanics that control progression do the opposite, restricting the probability space 
by limiting the number of options that players have at any one time—they cannot 
proceed until a particular problem is solved. As a designer, the mechanics of progres-
sion allow you to carefully structure the player’s experience and deliver a well-told 
story. They also enable you to control the difficulty of the game so that players do 
not encounter challenges for which they are not yet prepared. Table 2.1 summarizes 
these differences.

TAble 2.1
structural differences 
Between mechanics 
of emergence 
and mechanics of 
Progression

ST RuC T uRE EMERGENCE PROGRESSION

number of rules Low high

number of game elements high Low-high

interactions among elements high Low

Probability space Large, wide small, deep

replay value high Low

designer control of game sequence Low high

Length of game Tends to be short 
(Civilization is a rare exception)

Tends to be long

Learning curve Tends to be steep Tends to be gentle
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Emergence and Progression Integration
Although emergence and progression are considered two different ways of creating 
challenges in games, many games have elements of both. By integrating emergence  
and progression, designers strive to combine the best of both worlds: freedom and  
openness of play through emergence and the structured storylike experience through 
progression. Progression is normally used for storytelling, but it is difficult to create  
a coherent plot if the player has great freedom of action, as in emergent games. In 
practice, these generally alternate: An emergent level or mission unlocks a little story 
progress between levels, followed by another emergent level, and so on. The Grand 
Theft Auto games provide good examples. In those games, players may achieve victory  
in a mission by a wide variety of means, but their gameplay choices don’t really 
affect the story; it occurs only between missions. So far, not many games have suc-
ceeded in integrating the two different structures so that players experience them 
simultaneously. There are many reasons for this:

n	 Video games are still a relatively young medium. No one can expect all these 
problems to be solved already. 

n	 As Noah Wardrip-Fruin argues (see the “A Mismatch in the Mechanics of Games 
and Stories” sidebar), there is a disparity between the level of sophistication of the 
mechanics of progression and emergence: Mechanics of emergence have evolved 
much further and quicker in the past years than mechanics of progression have.

n	 In the past, the lack of solid formal theory of what game mechanics are and how 
they are structured made it difficult to approach such problems. One of the goals 
of this book is to present a methodological approach to designing game mechanics 
and to use this method to deal with these sorts of problems.

In addition, in the short history of video games there are a few interesting examples 
of games that have come up with ways to combine the two structures. Let’s take a 
look at one of the more recent examples.

a mismatch in the mechanics oF Games and stories

in his book Expressive Processing (2009), noah Wardrip-Fruin observes that the mechanics  
that govern a game’s interactive story have not evolved as much as the mechanics to  
handle movement, combat, and other aspects of the game’s (physics) simulation. simulation 
mechanics are currently very evolved and detailed, but the player’s progress through a 
story is simply tracked by setting up a few bottlenecks or gates to act as milestones. Once 
the player fulfills the task associated with a milestone, the story advances. as Wardrip-Fruin 
argues, the underlying shape of these story progression mechanics is not as interesting 
as the underlying shape of the mechanics of the rest of the game.
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example: From StarCraft to StarCraft 2
The original version of StarCraft is an excellent example of a game of emergence. 
StarCraft helped define the real-time strategy genre. Like Civilization, the individual 
game elements are fairly simple, but there are many interrelationships among them, 
setting up a system of game mechanics that has many interesting emergent prop-
erties. During the single-player campaign, you play through 30 missions, which 
nearly all have you build a base, manage your resources, and construct and upgrade 
an attack force before obliterating your opponents. The progression within a single 
StarCraft level is almost always the same, and because it is predictable, a given level 
does not feel very storylike.

StarCraft also tells a story around the levels. In many ways, it is a good example of 
storytelling in games, with a narrative that is more dramatic than most games of its 
time. In fact, its storyline follows a structure similar to a classical tragedy, which is 
definitely rare in games. However, the story is only a framing device around the  
core gameplay. The player’s performance and choices have no impact on the plot, 
apart from the fact that the player must complete missions to advance the story. 
The story provides context and motivation for the game but is not an integrated 
part of the gameplay.

When StarCraft 2 came out, more than a decade later, the story and its integration 
into the game was probably the biggest change. StarCraft 2 changed little about the  
core mechanics of the original game. You can still build a base, manage resources, 
and construct and upgrade your force. However, the missions of the single-player 
campaign are much more varied than they were in the original game. For example, 
in the level “The Devil’s Playground,” the lower areas of the play field are periodi-
cally submerged in lava, destroying everything that is caught there (see Figure 2.6). 
The mission’s objective is not to defeat an enemy base but to survive under these 
harsh conditions and harvest a number of resources in the meantime. This creates  
a different rhythm and progression from those of the typical missions in the original  
version of StarCraft. Another good example is the earlier mission called “The 
Evacuation.” In this mission, it is your objective to protect a number of civilian 
colonists as they try to escape a planet overrun by aliens. To this end, you need to 
escort four caravans of civilians trying to break through to the safety of a nearby 
spaceport. You will build a base and an attack force but in this case, to protect the 
route and civilians. Again, this creates a different play experience from the typical  
StarCraft mission. In the single-player campaign of StarCraft 2, it is rare to find a 
mission that progresses through the typical stages of the missions of the original 
game. No longer can you simply build your base, carefully explore the map, and 
attack enemy bases one by one. In StarCraft 2, you find yourself pressed by events 
and scenarios that were predesigned—a classic progression mechanic. As a result, 
the missions are much more varied and engaging, forcing players to adapt their 
strategies and common patterns of play to new circumstances all the time. Because 
they are not repetitive, they feel more storylike.
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In StarCraft 2, the player has more control over the larger story line of the game. To 
a certain extent, players can choose the order of missions and sometimes can choose 
between two options. Although this integrates the overall storyline into the game 
slightly better than the original StarCraft did, it is not as sophisticated as the integra-
tion between progression and emergence on the level of the individual mission.

Summary
In this chapter, you explored the categories of games of emergence and games of 
progression. These categories are frequently used in game studies to indicate two 
alternative ways of creating gameplay and challenges in games. There seems to be a 
tendency within game studies and among certain game designers to favor games of 
emergence over games of progression. This tendency can be attributed to the more 
interesting structure of the mechanics that create emergence in games and the size 
of the possibility space created by mechanics of emergence.

Games of emergence are characterized by relatively few rules, many interrelated 
game elements, and a large and wide possibility space. Games of progression are 
characterized by relatively many rules, fewer interrelation between game elements, 
and a smaller possibility space that is usually narrow and deep. 

FIGURe 2.6
“The devil’s 
Playground”  
mission in  
StarCraft 2
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Modern video games include elements from both games of emergence and games 
of progression. However, integrating emergence and progression so that the player 
experiences both at once is not straightforward. It requires keen insight in the 
structure of the mechanics that create them. In this book, we will teach you a more 
structured method for looking at mechanics. In the later chapters, we will return to 
the integration of emergence and progressions and use these methods to shed new 
light on the problem of integrating them.

Exercise
Games of chess are commonly regarded to have three phases: the opening, the mid-
dle game, and the end game—and yet the rules never change throughout the game. 
This effect is an emergent property of the rules themselves, not an artificial construct 
created by mechanics of progression. 

1. Find another game that progresses through different gameplay phases. (You 
should consider tabletop games as well as video games in your search.)

2. What causes this to happen?

3. Are the different phases truly emergent, or are they the result of a predesigned 
scenario or arbitrary triggers?
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Complex systems 
and the structure of  
Emergence
In the first chapter, we explained how gameplay emerges from the game’s mechan-
ics. In Chapter 2, “Emergence and Progression,” we showed that the mechanics of 
games of emergence possess a particular structure in which relatively simple rules 
create many different gameplay situations. In general, this also means that a game 
of emergence has a high replay value. In this chapter, we will explore the relation-
ship between emergence, the structure of game mechanics, and gameplay in more 
detail. We will see that for gameplay to emerge from them, the mechanics must be 
balanced between order and chaos. This balance is easily upset, which creates a chal-
lenge for designers. In fact, designing emergence is something of a paradoxical task, 
because one of the defining aspects of emergent behavior is that it occurs only after 
a system is put into motion.

Emergence is not restricted to the domain of games. There are many different com-
plex systems that display emergent behavior, and quite a few of these systems have 
been studied in the past. The science of complexity, popularly known as chaos theory, 
deals with emergent systems in other fields. In this chapter, we will take a look at 
some of the advances from this discipline to learn more about the structures of com-
plex systems that contribute to emergent behavior. But first we will discuss in more 
detail the relationship between emergence and gameplay.

Gameplay as an Emergent Property of Games
We define gameplay as the challenges that a game poses to a player and the actions 
the player can perform in the game. Most actions enable the player to overcome 
challenges, although a few actions (such as changing the color of a racing car or 
chatting) may not be related to challenges. The actions that are related to challenges 
are governed by the game mechanics. An avatar can jump only when a jumping 
mechanic has been implemented in the game, for example.

43

ChAptEr 3
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It’s possible to program the game in such a way that every challenge has one unique 
action that overcomes it. As we discussed in the previous chapter, classic games of  
progression, such as text-adventure games, work this way—each challenge is a unique 
puzzle, and each puzzle has a unique action that solves it. However, we also argued 
that in most games at least some of the actions and challenges are created differently. 
In Tetris, nobody programmed in all the possible combinations and sequences of 
falling tetrominoes (Tetris blocks). The game simply releases tetrominoes at random. 
In Tetris, the challenge is created by a combination of a random sequence of tetro-
minoes and the player’s previous actions in dealing with them. This combination is 
different every time, and players have some level of control over the challenges they 
face. The game requires very few actions to deal with the infinite variety of challenges 
it can create. Solitaire card games do the same thing.

Other games implement mechanisms that allow players to act in unexpected ways. 
In his 2001 article “The Future of Game Design,” game designer Harvey Smith dis-
cussed the need to set up game systems so that players have the opportunity to act 
in a wide range of expressive ways (www.igda.org/articles/hsmith_future). To make 
this possible, the game designer should move away from special-case solutions to 
individual, predesigned challenges and toward simple, consistent game mechanics 
that can be combined in interesting ways, even if this leads to some strange results. 
Rocket jumping is one of those examples. Because an exploding rocket exerts a force 
on nearby objects in most first-person shooter games, clever players have used that 
extra force to jump greater heights and distances. Smith regards these emergent 
player tactics not as problem but as an opportunity: He argues that more games 
should be designed around the freedom and creativity that expressive systems allow. 

consistency oVer realism

rocket jumping is an example of unintended, and rather weird, gameplay that is as 
unrealistic as it is enjoyable. it illustrates the argument made by steven Poole in his book 
Trigger Happy (2000) that in games it is more important to be consistent than to be real-
istic. Poole argues that to play a game is to immerse yourself into an artificial world cre-
ated by game mechanics. Players do not want those mechanics to be perfectly realistic. 
a realistic Formula 1 racing game, for example, would take players years of practice to 
become skilled enough to race, and that wouldn’t be fun at all for most players. Players 
expect all space shooter weapons to behave like the blasters in Star Wars, not like real 
lasers where the beam moves at the speed of light and is invisible unless you are hit by 
it. Players play games to do things that would be impossible or unsafe for them to do in 
real life, and odd effects such as rocket jumps are all part of the fun. however, players 
do expect game mechanics to be consistent. Players get frustrated when the mechanics 
seem arbitrary, such as when a rocket can kill a tough enemy but fails to destroy a light 
wooden door.

www.igda.org/articles/hsmith_future
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Games of emergence have a high replay value because the challenges and possible 
actions that occur while playing are different every time. Every session is the unique 
result of the collaboration between the game and its players. However, it is very 
hard to predict whether interesting gameplay will emerge from a particular game 
simply by looking at the rules. From our discussion of tic-tac-toe and Connect-Four 
in the previous chapter, it should be clear that creating emergence is not simply a 
matter of having many rules. The relation between the complexity of the rules and 
the complexity of the game’s behavior is not linear. You cannot create a more inter-
esting game simply by adding more rules. In fact, sometimes it is more effective to 
reduce the number of rules to create a system that displays truly interesting and 
emergent gameplay.

between Order and Chaos
The behavior of complex systems (see the “What Are Complex Systems?” sidebar) 
can be classified as ordered to chaotic and anything in between. Ordered systems 
are simple to predict, while chaotic systems are impossible to predict, even when 
you fully understand the way the parts work that make up the system. Emergence 
thrives somewhere between order and chaos.

What are complex systems?

When we refer to complex systems in this book, we do not mean systems that are difficult 
to understand. The word complex is used here to indicate that the system consists of 
many parts. as is often the case with the systems studied by the science of complex-
ity, these parts are often quite simple to understand and to model individually. When 
these parts are put together, most complex systems display surprising and unpredictable 
behavior that can be difficult to explain just by looking at the parts separately. in the 
scientific literature on complex systems, games are a classic example. The individual 
rules of these games tend to be fairly simple and easy to understand, yet the outcome of 
a game is unpredictable. in this book, we explore in detail the relationship between the 
individual parts of a game and the game’s overall behavior.

There are two stages between the extremes of order and chaos: periodic systems and 
emergent systems (Figure 3.1). Periodic systems progress through a distinct number 
of stages in an ongoing and easily predicted sequence. On a large scale, the weather 
system and the cycle of seasons behave like this. Depending where you are on the 
planet, you have a fixed number of seasons each year. In some areas, the rhythm 
of the seasonal cycle is very strict, and a particular season will start almost on the 
same day every year. Despite some variance in seasonal temperatures and the date 
when seasons start, the weather system is mostly in balance and progresses through 
the same cycle over and over again. (Global warming appears to be changing the 
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weather system at the moment, but there is considerable debate about whether it is 
a permanent change or part of a very long cycle.)

Emergent systems are less ordered and more chaotic than periodic systems. Emergent 
systems often display stable patterns of behavior, but the system might switch from 
one pattern to another suddenly and unpredictably. The weather system is a good 
example. Although the cycle of seasons has overall norms in a particular area, pre-
dicting the weather for a particular year is difficult. The date of the next hard frost 
or the amount of snow in winter is nearly impossible to predict accurately because 
of the complex interactions of pressure systems, ocean temperature, and air temper-
ature. It is still possible to make assumptions and create rules of thumb based upon 
statistical norms, such as “plant peas on Good Friday,” but these will not be reliable 
in every year.

experiencinG emerGence in a simple experiment

You can experience the four categories of complex behavior through a simple experi-
ment. all you need is a water tap (although this experiment works better with some 
taps than with others). When you open a water tap very gently, at one point it will start 
dripping drops of water at a slow, regular pace. sometimes it is easier to reach this 
state by opening the tap and then gently closing it. a closed tap is an easily predictable, 
ordered behavior: no water flows. a dripping tap is in a periodic state. now, when you 
gently open the tap further, it will start dripping faster and faster. however, at a certain 
point, not very long before you get a full stream of water, the pattern of water flow will 
become irregular. at this stage, you are moving the system quickly toward a chaotic state. 
somewhere in between the chaos and periodic dripping you might be able to get more 
complicated periodic patterns, such as two quick successive drips followed by a longer 
pause. sometimes the tap will alternate between fast drips and a slow, irregular trickle. 
Opening the tap further will quickly push the tap state back to a steady, ordered flow  
of water.

FIGURe 3.1
Four categories of 
behavior of complex 
systems
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In games, we can recognize patterns of behavior, and in many games we can recog-
nize multiple patterns at the same time. Games of progression are ordered systems, 
because all possible sequences of challenges and actions are predesigned. Although 
the player cannot know what will happen next, a designer looking at the mechan-
ics can determine it with certainty. In board games, taking turns creates a periodic 
system but with more subtlety. The discrete unit of time (ticks) used in most massively 
multiplayer online role-playing games (MMORPGs) affects the strategies of players. 
The distinct development phases in Sid Meier’s Civilization (expansion, consolidation, 
war, colonization, and the race to space) are clear examples of emergent behavior in 
games. Finally, dice or random number generators, and other players, introduce a 
chaotic element into games. To design an emergent game, the designer must ensure 
that all these elements balance one another in such a way that the game’s overall 
behavior falls somewhere in the emergence category.

Can emergence be Designed?
Emergence can occur in complex systems only after they have been set in motion. 
This explains why game design depends heavily on building prototypes and testing 
the game. Games are complex systems, and the only way to find out whether the 
gameplay is interesting, enjoyable, and balanced is to have people play the game in 
some form. 

Normally we think of design as a process in which the designer knows what she 
wants to produce and works to create it. Designing emergent systems is paradoxical 
because designers may not know exactly what final state their system will produce 
but will be designing the experience of getting there. However, as we explained in 
Chapter 1, “Designing Game Mechanics,” certain structures in a game’s mechanics  
will tend to produce particular types of results. Understanding these structures helps 
designers create the effects they want, even if the process still requires a lot of testing. 
This book is all about identifying these structures, recognizing them in your (and 
others’) games, and leveraging them to produce the gameplay you want.

Before we set our focus back on games in the following chapters, let’s take a look at 
a few classic examples from the science of complexity.

Structural Qualities of Complex Systems
The science of complexity typically concerns itself with vast, complex systems. The 
weather system is the classic example. In these systems, a small change can have 
large effects over time. This is popularly known as the butterfly effect: A butterfly 
that flaps its wings on one side of the planet might hypothetically trigger a motion 
of air that accumulates into a hurricane on the far side of the planet. Other systems 
studied by the science of complexity include stock markets, traffic, pedestrian flow, 
the flocking of birds, and the motion of astronomical objects. These systems are 



ptg8274339

48 Game mechanics: advanced Game desiGn

typically far more complex than the systems found in games. Luckily, there are also 
many other, simpler systems that also display emergent behavior. It is easier to study 
these systems and try to distill from them the relevant structural qualities that con-
tribute to emergent behavior.

Active and Interconnected Parts
At the boundary of mathematics, computer science, and games lies a peculiar field 
that studies cellular automata (the plural of cellular automaton). A cellular automa-
ton is a simple set of rules governing the appearance of spaces, or cells, in a line or 
on a grid. Each cell may be either black or white. The rules determine what causes a 
cell to change from black to white (or vice versa) and how the color of a cell influ-
ences the cells around it. Normally the rules for changing a cell’s color only take 
into account the cell’s current color and those of its eight immediate neighbors (on 
a two-dimensional grid) or its two immediate neighbors (on a line).

Mathematicians think of such a collection of rules as a hypothetical machine that 
operates by itself without human intervention. This is why they are called automata. 

A cellular automaton starts with its cells in a given configuration (some white, some 
black) and then applies the rules to each cell to determine whether its color should 
change. It does not change a cell immediately; it checks every cell in the grid first, 
marks the ones to be changed, and then changes them all before the next iteration. 
Then it repeats the process. Each iteration is called a generation. 

British scientist Stephen Wolfram has created a simple cellular automaton that 
exhibits emergent behavior. It uses a line of cells. The state (or color) of each cell 
is determined by the previous state of that cell and its two immediate neighbors. 
Because cells have only two possible states, black and white, this creates eight pos-
sible combinations. Figure 3.2 displays one set of possible rules (on the bottom) 
and the resulting, surprisingly complex pattern that is created by printing each new 
generation of the system under the previous one. It begins with one black cell and 
all the rest white.

The images at the bottom of the figure state the rules for converting the color of a 
cell. The leftmost rule means “If a black cell is surrounded by black cells on either 
side, in the next generation, the cell will turn white.” The fourth rule means “If a 
white cell has a black cell on its left side only, in the next generation, the white cell 
will turn black.”

Notice that even though there is nothing random in the rules, this cellular automa-
ton produces a pattern with distinctive and apparently random features.
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Wolfram described his work in detail in his book A New Kind of Science (2002).  
His extensive study has revealed three critical qualities of systems that exhibit 
dynamic behavior:

n	 They must consist of simple cells whose rules are defined locally. This means  
the system must consist of parts that can be describe relatively easily in isolation.  
In Wolfram’s cellular automaton example, eight simple rules determine the behavior  
of each individual cell.

n	 The system must allow for long-range communication. Changes in the state of  
a single part of the complex system must be able to cause changes in parts distant  
in space or time. Long-range communication is what makes the butterfly effect  
possible. In Wolfram’s cellular automaton, communication between parts takes 
place because each cell directly influences its immediate neighbors. Because those 
neighbors also have neighbors, each cell is indirectly connected to every other cell 
in the system.

FIGURe 3.2
stephen Wolfram’s  
cellular automaton
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n	 The level of activity of the cells is a good indicator for the complexity of the 
behavior of the system. In a system that has only a very few active cells, interesting, 
complex behavior is unlikely to emerge. In Wolfram’s automaton, activity is under-
stood as changes to a cell’s state: A cell is active when it changes from black to white 
or from white to black.

Interestingly, some of these qualities can be ”read” from the rules that govern each 
cell’s behavior. The fact that each cell takes input from itself and two neighbors 
indicates that there is a good chance at long-range communication: All the cells are 
connected. In addition, four of the eight rules in Figure 3.2 cause the cell to change 
its color, which indicates that there probably is going to be a fair amount of activity 
in the system.

Cellular automata show us that the threshold for complexity is surprisingly low. 
Relatively simple rules can give rise to complex behavior, as long as there are enough 
parts, activity, and connections. Most games are built in a similar way. Games 
consist of many different elements that are governed by fairly simple mechanics. 
Usually there are many possible interactions between the individual game elements. 
Obviously, the player is an important source of activity within the system, but as 
cellular automata show, emergence can take place even without human input. 

Tower defense games illustrate these properties well (Figure 3.3). Tower defense 
games consist of a number of relatively simple parts. Enemies follow a predesigned 
path toward the player’s fortress. Each enemy has a particular speed, a number of 
hit points, and perhaps a few attributes to make it more interesting. The player 
places towers to defend his position. Each tower fires projectiles at enemies within 
a certain range and at a certain rate. Some towers deal damage while others produce 
other effects, such as slowing enemies down. Sometimes towers will boost the per-
formance of neighboring towers. In a tower defense game, there are many elements 
defined by local mechanisms (enemies and towers). Like cellular automata, these 
elements are active (enemies move, towers respond to enemies) and interconnected 
(towers shoot at enemies, towers can boost each other’s performance).

The level of activity and the number of connections between elements are good 
indicators that can be used to distinguish games of emergence from games of pro-
gression. In a typical game of progression, all elements (puzzles, characters, and so 
on) interact only with the player’s avatar and not with each other, and they become 
active only when they are on the screen. The elements not currently visible on the 
screen in a game of progression are usually inactive. Similarly, the number of con-
nections among the elements is low. Game elements can interact only in a limited 
number of predesigned ways. Obviously, this gives the designer a lot of control over 
the events in a game of progression, but, as we have shown in the previous chapter, 
it also results in more predictable games that cease to be fun when all the predesigned 
options have been explored.
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Feedback loops Can Stabilize or Destabilize a System
Ecosystems are another classic example of complex systems. Ecosystems seem to be 
quite well balanced: The various animal populations within an ecosystem do not 
change much over time. What’s more, nature seems to include all sorts of mecha-
nisms to maintain this balance. This is best explained by looking at predator and 
prey populations. When there are many prey, the predators will find food easily. 
This will cause their number to increase. However, as more and more predators sur-
vive, the prey population will decrease. At a certain point, there will be too many 
predators, and the situation reverses: Now the predators won’t find enough food, 
and their population will decrease. Because there are fewer predators, more prey will 
survive and produce offspring causing their population to rise again. 

This particular balance between predators and prey in an ecosystem is attributed 
to what is called a feedback loop. A feedback loop is created when the effects of a 
change in one part of the system (such as the number of predators) come back and 
affect the same part at a later moment in time. In this case, an increase of the num-
ber of predators will cause a decrease of prey, which in turn will cause a subsequent 
decrease of predators. The effects of the changes to the predator population size are 
quite literally fed back to the same population size.

FIGURe 3.3
Tower Defense:  
Lost Earth HD 
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Feedback loops that work to maintain a balance within a system are called negative  
feedback loops. Negative feedback loops are commonly used in the design of electrical 
appliances. A thermostat is a typical example: A thermometer detects the tempera-
ture of the air, and when it becomes too low, it will activate a heater. The heater 
will then cause the temperature to rise, which in turn will cause the thermostat to 
turn the heater off again. A speed governor on a machine is another: When the 
machine speeds up (perhaps because the load on it has been reduced), the governor 
reduces the machine’s power source to make it slow down. When the machine slows 
down, the governor increases the power source to make it speed up. This keeps the 
machine’s speed constant. Speed governors are used to ensure that a machine works 
at its most efficient rate of speed and cannot run dangerously fast if the load on it is 
suddenly removed.

Negative feedback is frequently found in games. For example, in Civilization  
(Figure 3.4), the population of a city is affected by negative feedback that is not 
unlike the predator/prey example. As your cities grow, the growing population 
demands more and more food. This causes the city to grow to a stable size that is 
supported by the terrain and the player’s current level of technology.

FIGURe 3.4
Civilization V showing 
population and food 
supply of the city  
of Thebes
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The opposite of a negative feedback loop is, unsurprisingly, called a positive feedback  
loop. Instead of creating balance by acting against the changes that activated the 
feedback loop, a positive feedback loop will strengthen the effects that caused it. 
Audio feedback is a good example: A microphone picks up a sound, an amplifier 
amplifies it, and speakers reproduce the original sound louder. The microphone 
then picks up the new sound from the speakers, which gets amplified again, and 
so on. The result is a high-pitched shriek that can be stopped only by moving the 
microphone away from the speakers.

Positive feedback is also frequently found in games. For example, if you take one 
of your opponent’s pieces in a game of chess, it becomes easier to take another one 
because now you have more pieces than your opponent. Positive feedback creates 
volatile systems that can change quickly. 

We will be discussing feedback extensively throughout this book. In most games of 
emergence, several different feedback loops operate at the same time. For now, it is 
important to remember that in complex systems feedback loops can exist. Negative 
feedback loops work toward maintaining a balance in the system, while positive feed- 
back loops can destabilize the system.

Different behavioral Patterns emerge at Different Scales
Stephen Wolfram was not the only mathematician to study cellular automata. 
Probably the most famous cellular automaton was invented by John Conway and  
is called the Game of Life. Conway’s automaton consists of cells that are laid out on  
a two-dimensional grid. In theory, this grid goes on indefinitely in all directions. 
Each cell on the grid has eight neighbors: the cells that surround it orthogonally 
and diagonally. Each cell can be in two different states: It is either dead or alive. In 
most examples, dead cells are rendered white, while live cells are colored black. Each 
iteration the following rules are applied to each cell:

n	 A live cell that has fewer than two live neighbors dies from loneliness.

n	 A live cell that has more than three live neighbors dies from overcrowding.

n	 A live cell that has two or three live neighbors stays alive.

n	 A dead cell that has exactly three live neighbors becomes alive. 

To start the Game of Life, you need to set up a grid and choose a number of cells 
that are initially alive. An example of the effects that emerge from applying these 
rules is depicted in Figure 3.5. However, to really appreciate the emergent behavior 
of the Game of Life, we advise you to take a look at one of the many interactive  
versions available online.

T IP You can down-
load an open-source, 
cross-platform version 
of the Game of Life at 
http://golly.sourceforge.
net. Wikipedia’s entry, 
“conway’s Game of 
Life,” includes links to 
a number of other ver-
sions available online.

http://golly.sourceforge.net
http://golly.sourceforge.net
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Step 1 Step 2 Step 3Step 0 Step 4 Step 5 Step 6

When set into motion, the Game of Life usually has quite chaotic results, with a lot 
of activity exploding from its original live cells. Frequently after a number of itera-
tions the Game of Life settles in a more or less stable configuration, sometimes with 
a few groups of cells that oscillate between two states.

One of the earliest questions that the researchers studying the Game of Life asked 
themselves was this: “Is there an initial configuration of live cells that expands for-
ever?” They quickly started finding configurations that showed some surprising 
behavior. One of those configurations is called a glider. It is a group of five live cells 
that replicates itself one tile away after four iterations. The effect of a glider is that 
of a little creature that moves across the grid (Figure 3.6). More interesting patterns 
were found, such as a glider gun, a pattern that stays in one place but produces new 
gliders that move off every 30 iterations.

Step 0 Step 1 Step 2 Step 3 Step 4

Gliders and glider guns show that in complex systems the most interesting behavior 
takes place not at the scale of the individual parts but at the scale of groups of parts. 
This is something that can be observed in many other complex systems as well. The 
flocking of birds is a good example. A flock of birds moves as one; the group as a 
whole seems to have a distinctive shape, direction, and purpose (Figure 3.7). In this 
case, the “rules” that steer the birds operate on both scales. Flocking can be simu-
lated by having individual birds balancing their movement between moving toward 
the center of the group, matching speed and direction with their neighbors, and 
avoiding getting too close to their neighbors.

FIGURe 3.5
a few iterations of the 
Game of Life

FIGURe 3.6
a glider in the Game 
of Life
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In games, we see similar effects. Over the years players have wondered if the ghosts 
in Pac-Man are deliberately teaming up against the player and laying traps to catch 
the player. In fact, the ghosts do not collaborate, and their collective behavior appears 
to be much smarter than it actually is. The ghosts in Pac-Man are simple machines 
that follow simple rules. The game alternates between two states: scatter and chase. 
In the scatter state, the ghosts do not hunt the player, but each seeks out a different 
corner of the maze. Most of the time, however, the game is in the chase state, when 
the ghosts hunt the player. To hunt the player, the ghosts have to make a decision 
at each intersection in the maze. The algorithm that is used chooses the direction 
that brings the ghost closer to the player. It simply ignores any walls between the 
ghost and the player. Their behavior is implemented just a little differently for every 
ghost: Blinky (the red ghost) tries to go the player’s current position; Pinky (the  
pink ghost) tries to go to a position four tiles ahead of the player; Inky (the blue 
ghost) combines the player’s position and the position of Blinky to determine where 
to go; and finally Clyde (the orange ghost) chases the player when he is far away  
but tries to get to lower-left corner of the maze when he gets close. Together, the 
effects of the movements seem surprisingly smart: Blinky will follow the player 
while Pinky and Inky try to get ahead of the player, and Clyde adds in some noise. 
As a group, the ghosts are fairly effective hunters even with no knowledge of where 
the others are actually located. This combination of simple behaviors gives players 
the impression they are being hunted collaboratively, when they simply have com-
plementary strategies.

FIGURe 3.7
Flocking birds

T IP For an extended 
discussion of the  
ghost’s behavior in 
Pac-Man, see http://
gameinternals.com/
post/2072558330/ 
understanding-pacman- 
ghost-behavior.

http://gameinternals.com/post/2072558330/understanding-pacman-ghost-behavior
http://gameinternals.com/post/2072558330/understanding-pacman-ghost-behavior
http://gameinternals.com/post/2072558330/understanding-pacman-ghost-behavior
http://gameinternals.com/post/2072558330/understanding-pacman-ghost-behavior
http://gameinternals.com/post/2072558330/understanding-pacman-ghost-behavior
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Categorizing emergence
Scientists distinguish among various levels of emergence in a complex system. Some 
effects are more emergent than others. Feedback loops and the different scales that 
exist within a complex system together go a long way to describe and explain dif-
ferent levels of emergence. In his paper “Types and Forms of Emergence,” scientist 
Jochen Fromm uses feedback and scales to build the following taxonomy of emer-
gence (2005).

In the simplest form, nominal or intentional emergence, there is either no feedback or 
feedback only between agents on the same level of organization. Examples of such 
systems include most man-made machinery where the function of the machine is 
an intentional (and designed) emergent property of its components. The behavior 
of machines that exhibit intentional emergence is deterministic and predictable but 
lacks flexibility or adaptability. A speed governor and a thermostat are examples of 
this type of predictable feedback.

Fromm’s second type of emergence, weak emergence, introduces top-down feedback 
between different levels within the system. He uses flocking to illustrate this type of 
behavior. A bird reacts to the vicinity of other birds (agent-to-agent feedback) and at 
the same time perceives the flock as a group (group-to-agent feedback). The entire 
flock constitutes a different scale from the individual birds. A bird perceives and 
reacts to both. This behavior is not confined to birds; schools of fish behave simi-
larly. Flocking can be generalized to any kind of unit capable of perceiving both its 
immediate surroundings and the state of its group as a whole.

One step up the complexity ladder from weakly emergent systems are systems that 
exhibit multiple emergence. In these systems, multiple feedback traverses the different 
levels of organization. Fromm illustrates this category by explaining how interest-
ing emergence can be found in systems that have short-range positive feedback 
and long-range negative feedback. The stock market exhibits such behavior. When 
stocks are going up, people begin to notice and to buy more, driving the price up 
further (short-term positive feedback). People also know from experience that the 
stock will eventually reach a peak, and they make plans to sell the stock when they 
believe it has reached its peak, thus driving the price down (long-term negative feed-
back). The phenomenon works in reverse, too: People will sell a stock when they see 
it dropping but buy later when they think it has reached bottom and is a bargain. 
John Conway’s Game of Life also exhibits this type of emergence. The Game of Life 
includes both positive feedback (the rule that governs the birth of cells) and nega-
tive feedback (the rules that govern the death of cells). The Game of Life also shows 
different scales of organization: At the lowest end there is the scale of the individual 
cells; on a higher level of organization, you can recognize persistent patterns and 
behaviors such as gliders and glider guns.
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Fromm’s last category is strong emergence. His two main examples are life as an emer-
gent property of the genetic system and culture as an emergent property of language 
and writing. Strong emergence is attributed to the large difference between the 
scales on which the emergence operates and the existence of intermediate scales 
within the system. Strong emergence is multilevel emergence in which the outcome 
of the emergent behavior on the highest level can be separated from the agents on 
the lowest level in the system. For example, it is possible to set up a grid of the cells 
used for the Game of Life in such a way that on a higher level it acts as a computer 
able to perform simple computations and from which new complex systems (such 
as games) can be built. In this case, causal dependency between the behavior dis-
played by the computer and the Game of Life itself is minimal.

These categories suggest that in games different levels of emergent behavior also 
exist, often at the same time. More importantly, it also shows that structural char-
acteristics of the game’s mechanics (such as feedback loops and the existence of 
different scales) play a vital role in the emergence of complex and interesting 
behavior.

Harnessing Emergence in Games
Games are complex systems that can produce unpredictable results but must deliver a 
well-designed, natural user experience. To achieve this, game designers must under-
stand the nature of emergent behavior in general and of their game in particular. 

We regard the many active and interconnected parts, feedback loops, and different  
scales as structural qualities of the game as a system. In games, these structural qualities 
play a vital role in the creation of emergent gameplay. Studying game mechanics 
will reveal these (and other) structures in much more detail. The rest of this book is 
dedicated to this study. 

The three structural qualities that were the main subject of this chapter are also the 
first stepping-stones toward the construction of an applied theoretical framework 
called Machinations that deals with emergence in games head-on. The Machinations  
framework allows you, as a game designer, to get a better grip on the elusive process  
of building quality games displaying emergent behavior. In the following chapters, we  
will zoom in on the game mechanics of the internal economy. We’ll explain how 
the Machinations framework can be used to visualize game mechanics and how struc-
tural qualities of the mechanics can be read from these visualizations. In Chapter 10,   
“Integrating Level Design and Mechanics,” and Chapter 11, “Progression Mechanisms,” 
we will zoom out and show how on a larger scale mechanics can be grouped and 
used to design interesting levels that use both progression and emergence.
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Summary
In this chapter, we discussed the definition of complex systems and showed how 
gameplay emerges from them. We described the continuum between strictly ordered 
systems and entirely chaotic ones and showed that emergence takes place some-
where between the two. Three structural qualities of complex systems contribute  
to emergence: active and interconnected parts; feedback loops; and interaction at 
different scales.

We used cellular automata as an example of simple systems that can produce emer-
gence, and we described how tower defense games work like cellular automata.

Finally, we introduced Fromm’s categories of emergence, which are produced by  
different combinations of feedback loops and interactions among the parts of a  
system at different scales.

Exercises
1. Revise some of Wolfram’s rules as shown in Figure 3.2 so that some of the eight 
possible combinations shown produce a different outcome from Wolfram’s original.  
Using graph paper and a pencil, start with a single occupied cell and apply your new   
rules repeatedly down the page. How do the results differ from the ones in the 
figure?

2. Conway’s Game of Life is set on a rectangular grid and uses rules that modify a 
cell based on the state of the eight cells around it. On a hexagonal grid, each cell has 
six neighbors rather than eight, and on a triangular grid, each cell has only three 
neighbors. Try devising Game of Life–like rules for a hexagonal or triangular grid 
and see what results you get.
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Internal Economy
In Chapter 1, we listed five types of mechanics that you might find in a game:  
physics, internal economy, progression mechanisms, tactical maneuvering, and 
social interaction. In this chapter, we’ll focus on the internal economy. 

In real life, an economy is a system in which resources are produced, consumed, and 
exchanged in quantifiable amounts. Many games also include an economy, con-
sisting of the resources the game manipulates and the rules about how they are 
produced and consumed. However, in games, the internal economy can include all  
sorts of resources that are not part of a real-life economy. In games, things like health, 
experience, and skill can be part of the economy just as easily as money, goods, and 
services. You might not have money in Doom, but you do have weapons, ammunition, 
health, and armor points. In the board game Risk, your armies are a vital resource that 
you must use and risk in a gambit to conquer countries. In Mario Galaxy, you collect 
stars and power-ups to gain extra lives and to get ahead in the game. Almost all genres 
of games have an internal economy (see Table 1.1 in Chapter 1 for some more exam-
ples), even if it does not resemble a real-world economy.

To understand a game’s gameplay, it is essential to understand its economy. The 
economies of some games are small and simple, but no matter how big or small 
the economy is, creating it is an important design task. It is also one of the few 
tasks that belongs exclusively to the designer and no one else. To get game phys-
ics right, you need to work closely with the programmers; to get a level right, you 
need to work closely with the story writers and level designers; but you must design 
the economy on your own. This is the core of the game designer’s trade: You craft 
mechanics to create a game system that is fun and challenging to interact with. 

In Fundamentals of Game Design, Ernest Adams discussed the internal economy of 
games. The discussion in this book repeats some of those points and expands the 
notion of internal economy.

Elements of Internal Economies
In this section, we briefly introduce the basic elements of game economies: resources, 
entities, and the four mechanics that allow the resources to be produced, exchanged, 
and consumed. This is only a summary; if you need a more in-depth introduction, 
please see Chapter 10, “Core Mechanics,” in Fundamentals of Game Design.

NOT E We use a  
very broad definition 
of the word economy. 
it’s not just about 
money! in an informa-
tion economy, there are 
data producers, data 
processors, and data 
consumers. Political 
economy studies the 
way that political forces 
influence government 
policies. economies 
about money are called 
market economies. 
But we use the term 
in a more abstract way 
to refer to any kind 
of system in which 
resources—of any  
type—can be pro-
duced, exchanged,  
and consumed.
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Resources
All economies revolve around the flow of resources. Resources refer to any concept 
that can be measured numerically. Almost anything in a game can function as a 
resource: money, energy, time, or units under the player’s control all are examples 
of resources, as are items, power-ups, and enemies that oppose the player. Anything 
the player can produce, gather, collect, or destroy is probably a resource of some 
sort, but not all resources are under the player’s control. Time is a resource that nor-
mally disappears by itself, and the player usually cannot change that. Speed is also 
a resource, although it is generally used as part of a physics engine rather than part 
of an internal economy. However, not everything in a game is a resource: platforms, 
walls, and any other type of inactive or fixed-level features are not resources. 

Resources can be tangible or intangible. Tangible resources have physical properties 
in the game world. They exist in a particular location and often have to be moved 
somewhere else. Examples include items the avatar carries around in an inventory 
or trees that can be harvested in Warcraft. In a strategy game, the player’s units are 
also tangible resources that must be directed through the world.

Intangible resources have no physical properties in the game world—they do not 
occupy space or exist in a particular location. For example, once the trees in 
Warcraft have been harvested, they are changed into lumber, which is intangible. 
Lumber is just a number—it doesn’t exist in a location. The player doesn’t need to 
physically direct lumber to a site to build a new building. Simply having the right 
amount of lumber is enough to start building, even if the building is constructed far 
away from the location where the lumber was harvested. Warcraft’s handling of trees 
and lumber is a good example of how games can switch between tangible and intan-
gible treatments of resources. Medical kits (tangible) and health points (intangible) 
in shooter games are another example.

Sometimes it is useful to identify resources as either abstract or concrete. Abstract 
resources do not really exist in the game but are computed from the current state 
of the game. For example, in chess you might sacrifice a piece to gain a strategic 
advantage over your opponent. In this case, “strategic advantage” can be treated 
as an abstract resource. (Abstract resources are intangible too—obviously, “strategic 
advantage” is not a thing stored in a location.) Similarly, the altitude of your avatar 
or units can be advantageous in a platform or strategy game; in this case, it might 
make sense to treat altitude as a resource, if only as a way of factoring it into the 
equation for the strategic value of capturing particular positions. The game nor-
mally does not explicitly tell the player about abstract resources; they are used only 
for internal computation. 
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Note that in video games some resources that might appear to be abstract are in 
fact quite concrete. For example, experience points are not an abstract resource in a 
role-playing game. Instead, they are an intangible, but real, commodity that must 
be earned and (sometimes) spent like money. Happiness and reputation are two more 
resources used by many games that, although they are intangible, are nevertheless 
concrete parts of the game. 

To design a game’s internal economy or to study the internal economy of an exist-
ing game, it is most useful to start identifying the main resources and only then 
describe the mechanisms that govern the relationships between them and how they 
are produced or consumed.

entities
Specific quantities of a resource are stored in entities. (If you are a programmer, an 
entity is essentially a variable.) A resource is a general concept, but an entity stores 
a specific amount of a resource. An entity named “Timer,” for example, stores the 
resource time—probably the number of seconds remaining before the end of the 
game. In Monopoly, each player has an entity that stores available cash resources.  
As the player buys and sells, pays rent and fines, and so on, the amount of cash in 
the entity changes. When a player pays rent to another player, cash flows from the 
first player’s entity to the second player’s entity.

Entities that store one value are called simple entities. Compound entities are groups 
of related simple entities, so a compound entity can contain more than one value. 
For example, a unit in a strategy game normally includes many simple entities that 
describe its health, damage capability, maximum speed, and so on. Collectively, 
these make up a compound entity, and the simple entities that make it up are known 
as its attributes. Thus, a unit’s health is an attribute of the unit.

Four economic Functions
Economies commonly include four functions that affect resources and move them  
around. These are mechanics called sources, drains, converters, and traders. We describe  
them here. Again, this is a summary; for further details, see Chapter 10 of Fundamentals 
of Game Design.

n	 Sources are mechanics that create new resources out of nothing. At a certain 
time, or upon certain conditions, a source will generate a new resource and store it 
in an entity somewhere. Sources may be triggered by events in the game, or they 
may operate continuously, producing resources at a certain production rate. They 
may also be switched on and off. In simulation games, money is often generated 
by a source at intervals, with the amount of money created proportional to the 
population. As another example, some games that involve combat automatically 
regenerate health over time.
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n	 Drains are the opposite of sources: They take resources out of the game, reduc-
ing the amount stored in an entity and removing them permanently. In simulation 
games in which it is necessary to feed a population, the food is drained at a rate pro-
portional to the population. It does not go anywhere or turn into anything else; it 
simply disappears. In shooter games, ammunition is drained by firing weapons.

n	 Converters turn resources of one kind into another. As we mentioned, in 
Warcraft, trees (a tangible resource) turn into lumber (an intangible one) when the 
trees are harvested. The act of harvesting is a converter mechanic that converts trees 
into lumber at a specific rate: A given number of trees will produce a given amount 
of lumber. Many simulation games include technology upgrades that enable players 
to improve the efficiency of the converter mechanics in the game, causing them to 
produce more of the new resource from the old one.

n	 Traders are mechanics that move a resource from one entity to another, and 
another resource back in the opposite direction, according to an exchange rule. If 
a player buys a shield from a blacksmith for three gold pieces, the trader mechanic 
transfers the gold from the player’s cash entity to the blacksmith’s and transfers the 
shield from the blacksmith’s inventory to the player’s. Traders are not the same as 
converters. Nothing is created or destroyed; things are just exchanged.

Economic Structure
It is not particularly difficult to identify the entities and the resources that comprise 
an economy, but it is harder to get a good perspective on the system as a whole. If 
you were to make graphs of the elements in your economy, what shapes would the 
graphs reveal? Is the amount of a given resource increasing over time? How does the 
distribution of resources change? Do resources tend to accumulate in the hands of 
a particular player, or does the system tend to spread them out? Understanding the 
structure of your economy will help you find the answers.

economic Shapes
In the real world, people represent features of an economy with charts and figures 
(Figure 4.1). These graphs have a few interesting properties. At the small scale, their 
lines move chaotically, but at larger scales, patterns become visible. It is easy to see 
whether a line is going up or down in the long run and to identify good and bad 
periods. In other words, we can recognize and identify distinctive shapes and pat-
terns from these types of charts.



ptg8274339

inTernaL ecOnOmY 63

C
h

A
p

t
E
r

 4

Wall Street Crash on the Dow Jones Industrial Average, 1929
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We can draw similar charts displaying the fortunes of players in a game. As you will 
see, distinctive shapes and patterns emerge from the internal economy of a game. 
However, there is no one shape that identifies quality gameplay. What constitutes 
good gameplay depends on the goals you set for your game and the context that 
surrounds it. For example, in one game you might want the player to struggle for a 
long time before managing to come out on top (Figure 4.2). In another, you might 
aim for quick reversals in fortune and a much shorter play-through (Figure 4.3).

FIGURe 4.1
Graph of the stock 
market crash leading to 
the Great depression. 
most movement is  
chaotic, but the crash 
is clearly visible.

FIGURe 4.2
a long game in which 
the player triumphs 
after an extended 
struggle against a 
powerful opponent
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The Shape of a Game of Chess
We can take the development of players’ fortunes in a game of chess as a basis for 
studying shapes in game economies. In chess, the important resources are the players’ 
pieces. Chess players (and computer chess programs) assign a point value to each 
piece depending on what kind it is. For example, in one system, pawns are worth 
one point, rooks five, and the queen nine. Adding up the value of all the pieces one 
player has on the board produces a number called material. Players use their pieces 
to maneuver on the board to gain strategic positions. Strategic advantage can be 
measured as an abstract resource in the game. Figure 4.4 depicts what might be the 
course of play between two players in a game of chess.

FIGURe 4.3
a short game with 
quick reversals of 
fortune

FIGURe 4.4
The course of a par-
ticular game of chess. 
The color of a line indi-
cates the color of the 
player it refers to.
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You can discover a few important patterns in this chart. To start with, the long-term 
trend of both players’ main resource (material) is downward. As play progresses, 
players will lose and sacrifice pieces. Gaining material is very difficult. In chess, the 
only way to gain a piece is to bring a pawn to the other side of the board to be pro-
moted to another, stronger piece, which would lead to an increase of material. This 
is a rare event that usually initiates a dramatic change of fortune for the players. If 
we consider only the material, chess appears to be a battle of attrition: Players who 
can make their material last longest will probably come out on top.

Strategic advantage is more dynamic in the game; it is gained and lost over the 
course of play. Players use their material to gain strategic advantage or reduce the 
strategic advantage of their opponents. There is an indirect relationship between 
the different amounts of material the players have and their ability to gain strategic 
advantage: If a player has more material, then gaining strategic advantage becomes 
easier. In turn, strategic advantage might be leveraged to take more pieces of an 
opponent and reduce that player’s material. Sometimes it is possible to sacrifice  
one of your pieces to gain strategic advantage or to lure your opponent into losing 
strategic advantage. 

A game of chess generally progresses through three different stages: the opening, the 
middle game, and the endgame. Each stage plays a particular role in the game and is 
analyzed differently. The opening usually consists of a sequence of prepared and 
well-studied moves. During the opening, players try to maneuver themselves into a 
position of advantage. The endgame starts when there are relatively few pieces left, 
and it becomes safer to involve the king in the game. The middle game falls some-
where between the opening and the endgame, but the boundaries between the stages 
are not clear. These three stages can also be identified from the economic analysis in 
Figure 4.4. During the opening, the number of pieces decreases only slowly, while 
both players build up strategic advantage. The middle game starts when players are 
exploiting their strategic advantage to take their opponents’ pieces; it is characterized 
by a sharper decline of material. During the endgame, the material stabilizes again 
as the players focus on their final attempts to push the strategic advantage to a win.

From Mechanics to Shapes
To produce a particular economic shape, you need to know what type of mechani-
cal structures create what shapes. Fortunately, there is a direct relationship between 
shapes in a game’s economy and the structure of its mechanics. In the next sections, 
we discuss and illustrate the most important building blocks of economic shapes.

neGaTive FeedBacK creaTes an eqUiLiBriUm
Negative feedback (as discussed in Chapter 3, “Complex Systems and the Structure of  
Emergence”) is used to create stability in dynamic systems. Negative feedback makes 
a system resistant to changes: The temperature of your refrigerator is kept constant 

NOT E This analysis  
of chess is a high- 
level abstraction to 
illustrate an economic 
principle using a 
familiar game. classic 
texts on the theory 
of chess do not treat 
it in economic terms, 
because chess is about 
checkmating the king, 
not taking the most 
pieces. however, our 
illustration shows that 
gameplay and game 
progress can be under-
stood in economic 
terms even if the game 
itself is not about 
economy. 
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even if the temperature outside the refrigerator changes. The point at which  
the system stabilizes is called the equilibrium. Figure 4.5 displays the effects of  
negative feedback.

The simplest shape of the equilibrium is a straight horizontal line, but some systems 
might have different equilibriums. An equilibrium might change steadily over time 
or be periodical (Figure 4.6). Changing equilibriums requires a dynamic factor that 
changes more or less independently of the negative feedback mechanism. The out-
side temperature throughout the year is an example of a periodical equilibrium that 
is caused by the periodic waxing and waning of the available hours of daylight and 
the relative strength of the sun.

POsiTive FeedBacK creaTes an arms race
Positive feedback creates an exponential curve (Figure 4.7). Collecting interest on 
your savings account is a classic example of such a curve. If the interest is the only 
source of money going into your savings account, the money will spiral upward, 
gaining speed as the accumulated sum creates more and more interest over time.  
In games, this type of positive feedback is often used to create an arms race between 
multiple players. A good example is the harvesting of raw materials in StarCraft (or 
similar constructions in many other RTS games). In StarCraft, you can spend 50 

FIGURe 4.5
The effect of negative 
feedback

FIGURe 4.6
negative feedback on 
changing equilibriums. 
On the left, a rising 
equilibrium; on the 
right, a periodically 
changing equilibrium.
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minerals to build a mining unit (called an SCV, for Space Construction Vehicle) that 
can be used to collect new minerals. If StarCraft players set aside a certain portion  
of their mineral income to build new SCVs, they get the same curve as money in a 
savings account.

Obviously, StarCraft players do not spend their resources only on SCV units. They 
also need to spend resources to build military units, to expand their bases, and to 
develop new technology. However, the economic growth potential of a base in 
StarCraft is vital in the long run. Many players build up their defenses first and  
harvest many resources before pushing to destroy their enemy with a superior 
capacity to produce military units.

deadlocks and mutual dependencies

Positive feedback mechanisms can create deadlocks and mutual dependencies. in StarCraft,
to get minerals, you need scv units, and to get scv units, you need minerals. These  
two resources are mutually dependent, and this dependency can lead to a deadlock 
situation: if you are left without minerals and scv units, you can never get production 
started. in fact, you need enough minerals and at least one scv unit to be able to build 
a headquarters, a third resource that enables this feedback loop. This deadlock situation 
is a potential threat. an enemy player might destroy all your scv units. if this happens 
when you have spent all your minerals on military units, you are in trouble. it can also 
be used as a basis for level design. Perhaps you start a mission with military units, some 
minerals, but no scv units or headquarters. in this case, you must find and rescue scv
units. deadlocks and mutual dependencies are characteristics of particular structures  
in mechanics.

FIGURe 4.7
Positive feedback 
creates exponential 
curves.
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One of the most useful applications of positive feedback in games is that it can be 
used to make players win quickly once a critical difference is created. As should 
become clear from Figure 4.7, positive feedback works to amplify small differences: 
The difference between the balances of two bank accounts with equal interest rates 
but different initial deposits will only grow over time. This effect of positive feed-
back can be used to drive a game toward a conclusion after the critical difference 
has been made. After all, nobody likes to keep playing for long once it has become 
clear who will win the game. 

positiVe Feedback on destructiVe mechanisms

Positive feedback does not always work to make a player win; it can also make a player 
lose. For example, losing pieces in a game of chess weakens your position and increases 
the chance that you will lose more pieces; this is the result of a positive feedback loop. 
Positive feedback can be applied to a destructive mechanism (as is the case with losing 
material in chess). in this case, it is sometimes called a downward spiral. it is important 
to understand that positive feedback on a destructive mechanism is not the same as neg-
ative feedback—negative feedback tends to damp out effects and produce equilibrium. 
You can also have negative feedback attached to a destructive mechanism. The shooter 
game Half-Life starts spawning more health packs when a player is low on hit points.

LOnG-Term invesTmenTs vs. shOrT-Term Gains
If StarCraft were a race to collect as many minerals as possible without any other 
considerations, would the best strategy be to build a new SCV unit every time 
you’ve collected enough minerals? No, not exactly. If you keep spending all your 
income on new SCVs, you would never save any minerals, which is what you need 
to win the game. To collect minerals, at some point you need to stop producing 
SCVs and start stockpiling. The best moment to do this depends on the goals and 
the constraints of the game—and what the other players do. If the goal is to accu-
mulate the biggest pile of minerals in a limited amount of time or to accumulate a 
specific number of minerals as quickly as possible, there is an ideal number of SCV 
units you should produce. 

To understand this effect, look at Figure 4.8. It shows that as long as you’re invest-
ing in new SCVs, your minerals do not accumulate. However, as soon as you stop 
investing, the minerals increase at a steady pace. This pace depends on the number 
of SCV units you have. The more you have, the faster your minerals will increase. 
The longer you keep investing, the later you will start accumulating minerals, but 
you will eventually catch up and overtake anybody who started accumulating before 
you did. Depending on the target goal, one of those lines is the most effective.
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It is a good thing StarCraft is about more than just collecting minerals. Spending 
all your minerals on SCV units is a poor strategy because eventually you will be 
attacked. You have to balance your long-term goals with short-term requirements 
such as the protection of your base. In addition, some players favor a tactic in which 
they build up an offensive force quickly in a gambit to overwhelm their opponent 
before they can build up their defenses—the “tank rush,” which was first made 
famous in Command & Conquer: Red Alert. On some maps, initial access to resources 
is limited, and you must move around the map quickly to consolidate your access 
to future resources. Investing in SCV units is a good strategy in the long run, but it 
requires you take some risk in the beginning, possibly giving up on quick military 
gains via the tank rush. 

Variation From player perFormance  
and resource distribution

in StarCraft, it is not only the number of scv units that determines the pace at which 
you harvest minerals. minerals come from deposits of crystals, which have a particular 
location on the map. Finding the best location for your base, and micro-managing your 
scv units to harvest minerals from crystals effectively, is a skill in itself. These are good 
examples of how player skill and game world terrain can produce input variation that  
affects the economic behavior of your game. Of course, the players’ inputs must influ-
ence the economy, but it is best if the player’s inputs occur frequently but no one input 
has too large an effect.

FIGURe 4.8
a race of accumulation
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FeedBacK Based On reLaTive scOres
During Marc LeBlanc’s talk on feedback mechanisms in games at the Game Developers 
Conference in 1999, he described two alternate versions of basketball. In “negative  
feedback basketball,” for every five points that the leading team is ahead, the trail-
ing team is allowed to field one extra player. In “positive feedback basketball,” this 
effect is reversed: The leading team is allowed to field one extra player for every 
five points they are ahead. The effects of using the difference between two players 
to create a feedback mechanism are slightly different from using absolute values to 
feed this mechanism: The effects of the feedback mechanisms affect the difference
between the players, not their absolute resources. This can produce some counter-
intuitive effects. The economic chart of negative feedback basketball, for example, 
shows the lead of the better team settling on a stable distance at which the lack of 
the skill of the trailing team is offset by the extra players they can field (Figure 4.9).

dynamic equilibrium

The equilibrium that is created by a negative feedback mechanism that is fed by the dif-
ference in resources between two players is a dynamic equilibrium: it is not set to a fixed 
value but is dependent on other, changing factors in the game. You will find that most 
interesting applications of negative feedback in games are dynamic in this way. making 
the equilibrium of a negative feedback loop dynamic by making it dependent on the rela-
tive fortune of multiple players, or other factors in the game, is a good way to move away 
from a too predictable balance created by a nondynamic equilibrium. With experience, 
knowledge, and skill, you will be able to combine several factors to compose dynamic 
equilibriums that are periodic, are progressive, or follow another desired shape.

FIGURe 4.9
score graph of 
negative feedback 
basketball
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When two teams are playing positive feedback basketball, the differences in skills are  
aggravated. When one side is better than the other, this will result in a very one-sided 
match. However, when both sides are closely matched, a different pattern emerges: 
The game will probably remain close, until one side manages to take a decisive lead 
after which the match becomes very one-sided again. In this latter case, a small dif-
ference in skill, an extra effort, or sheer luck can become the decisive factor.

In Chapter 6, we explore the gameplay effects of positive and negative feedback on 
basketball in more detail.

rubberbandinG is neGatiVe Feedback  
on relatiVe position

racing games frequently use negative feedback based on the players’ position in the 
field to keep the race tight and exciting. This mechanism is often referred to as rubber-
banding, because it seems to players as if the other cars are attached to theirs by a rub-
ber band—they never get too far ahead or too far behind. some games implement rubber-
banding by simply slowing leading cars down and speeding trailing cars up. Other games 
use more subtle negative feedback mechanics to reach similar effects. in MarioKart,
players are awarded with a random power after picking up a power-up. however, trailing 
players have a better chance of picking up a more powerful power-up than leading ones 
do. in addition, because most weapon power-ups in MarioKart are used on opponents in 
front of the player, the leader of the field is a target more often than the player in the last 
position. This causes the lead to change hands frequently and increases the excitement 
of the game, increasing the likelihood of a last-minute surge past the leader.

uses for Internal Economies in Games
In the previous sections, we discussed the elements and common structures of 
internal game economies. In this section, we will discuss how game economies are 
typically used in games of different genres. Table 1.1 provided a quick overview of 
some mechanics that are typically part of that economy. Now, we will discuss the 
typical economic structures found across game genres in more detail.

Use an Internal economy to Complement Physics
Obviously, physics make up the largest part of action games’ core mechanics. Physics 
are used to test the player’s dexterity, timing, and accuracy. Still, most action games 
add an internal economy to create an integral reward system or to establish a system 
of power-ups that requires resources. In a way, the simple use of a scoring system 
adds economic mechanics to many action games. If you collect points for taking out 
enemies, players will have to consider how much they will invest to take out that 
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enemy. Will they put their avatars at risk, or will they waste ammunition or some 
sort of energy that cannot easily be regained? 

Super Mario Brothers and many other similar platform games use a simple economy 
to create a reward system. In Super Mario Brothers, you can collect coins to gain extra 
lives. Because you need to collect quite a few coins, the designer can place them 
liberally throughout a level and add or remove them during play-testing without 
affecting the economy significantly. In this way, coins can be used to guide a player 
through a level. (Collectible objects that are used to guide players are often called 
breadcrumbs.) It is safe to assume that you are able to reach all coins, so if you spot a  
coin, there must be a way to reach it. This creates the opportunity to reward skillful  
players for reaching difficult places in the game. Used in this way, the internal economy 
of the game can be very simple. However, even a simple economy like this already 
involves a feedback loop. If players go out of their way to collect many coins, they 
will gain more lives, thus allowing them to take more risks to collect more coins.

When setting up a system like this, you must be careful to balance the risks and 
rewards. If you lure players into deadly traps with just a single coin, you are invit-
ing them to risk a life to gain a single coin. That simply isn’t fair, and the player will 
probably feel cheated. As a designer, you have a responsibility to match the risks 
and rewards, especially when they are placed close to the path novice players will 
take. (Creating a reward that the player can see but never reach is even worse—it 
causes players to take risks for rewards they can never obtain.)

Power-ups, including weapons and ammunition in first-person shooters, create a 
similar economy. Power-ups and ammo can be rewards in themselves, challenging  
the player to try to eliminate all enemies in a level. As a game designer, you have to  
make sure that the balance is right. In some games, it is perfectly all right if killing  
enemies will, on average, cost more bullets than the players can loot from their 
remains. However, if this leads to a situation in which the player is eventually short 
on the proper ammo for the big confrontation with a boss character, you risk penal-
izing players for making an effort in the game. In survival-oriented first-person 
shooters, creating a scarce economy of weapons and ammo is generally a good thing 
because it adds to the tension and the drama, but it is a difficult balance to create. 
If your shooter is more action-oriented, then it is probably best to make sure there 
is plenty of ammo for the player, and you should make sure that taking out extra 
enemies is properly rewarded.

Use an Internal economy to Influence Progression
The internal economy of a game can also be used to influence progression through 
a game that involves movement. For example, power-ups and unique weapons can 
play a special role in an action game’s economy. They can be used to gain access 
to new locations. A double-jump ability in a platform game will allow the player 
to reach higher platforms that were initially unreachable. In economic terms, you 
can think of these abilities as new resources to produce the abstract resource access. 
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Access can be used to gain more rewards or can be required to progress through  
the game.

In both cases, as a designer, you should be wary of a deadlock situation. For example,  
you might have a special enemy guard the exit of a level. Somewhere in the same 
level there is a unique weapon that is required to kill that enemy with a single shot. 
The weapon is usable throughout the level. When the player finds the weapon, it is 
loaded with ten bullets, and there are no more until the next level—but the player 
doesn’t know this the first time playing. Now, a first-time player finds the weapon, 
fires a couple of shots to experiment with it, uses it on a couple of other enemies, 
and finds himself at the exit with one bullet left. The player fires and misses. You 
have just created a deadlock situation. The player needs access to the next level to 
gain bullets but needs bullets to gain access. 

deadlock resolution in Zelda

in many Zelda games, players frequently must use consumable items—arrows or 
bombs—to gain access to new areas. This creates a risk of deadlocks, if the player runs 
out of the items needed. The designers of Zelda games prevent these no-win situations  
by making sure there are plenty of renewable sources for the required resources. 
dungeons are littered with useful pots that yield these resources if the player destroys 
them (Figure 4.10). Broken pots are mysteriously restored as the player moves from room 
to room, creating a source that is replenished from time to time. Because the pots can 
contain anything, as a designer you can use a mechanism like this to provide the player 
with any resource required. You can even use it as a way of providing gameplay hints:  
if players are finding a lot of arrows, they are probably going to need a bow soon.

FIGURe 4.10 Pottery is a useful source in Zelda games.
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Use an Internal economy to Add Strategic Gameplay
It is surprising how many of the strategic challenges in real-time strategy games are 
economic in nature. In a typical game of StarCraft, you probably spend more time 
managing the economy than fighting the battle. Including an internal economy is 
a good way to introduce a strategic dimension to a game that operates on a larger 
time span than most physical and/or tactical action.

One of the reasons that most real-time strategy games have elaborate internal 
economies is that these economies allow the games to reward planning and long-
term investments. A game about military conflict with little forward planning and 
no long-term investments would be a game of tactics rather than strategy, because 
it would probably be more about maneuvering units on the battle field. To sustain 
a level of strategic interaction, a game’s internal economy needs to be more compli-
cated than the internal economies that simply complement the physics of an action 
game. Economies in strategy games usually involve multiple resources and involve 
many feedback loops and interrelationships. Setting up an economy like that for 
the first time is challenging, and finding the right balance is even more difficult. 
As a designer, you need to understand the elements of the economy and develop a 
keen sense to judge its dynamic effects. Even if you have years of experience, it is 
easy to make mistakes: There have been many tweaks to the economy of games like 
StarCraft to retain the right balance after players developed new strategies, even after 
the game had been long published! 

Even without a focus on the economics of production (such as StarCraft’s minerals 
and SCV units), internal economies can add strategic depth to almost any game. In 
most cases, this involves planning to use the available resources wisely. As already 
discussed, the economy of chess can be understood in terms of material (playing  
pieces) and strategic advantage. Chess is not about production, and gaining a piece 
in chess is unusual. Rather, the game is about using and sometimes sacrificing your  
material in order to produce as much strategic advantage as possible. In other words, 
chess is all about getting the most mileage out of your pieces. 

You can find something similar in the game Prince of Persia: The Sands of Time. In 
this action-adventure game, the player progresses through many levels filled with 
dexterity and combat challenges. Early in the game, the player is awarded a magical  
dagger that allows that player to control time. If anything goes wrong, the player 
can use sand from the dagger to rewind time and to try again. This power can also 
be used during combat, for example just after the player has taken a big hit. In addi-
tion, the player can use sand as a magical power to freeze time. This helps when 
battling multiple enemies. The sand is not limitless, however. The player can rewind 
time only so often, but fortunately, defeating enemies provides the player with new 
sand. This means that, in additional to the usual action-oriented gameplay, the 
player has to manage a vital resource. The player must decide when is the best time 
to invest some sand. Different players will have different ideas about when they 
should use their sand. Some will use it more often to help out with combat, while 
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others will prefer to save it for challenging jumping puzzles. In this way, the sand is 
a versatile resource: Players are able to use it to boost their performance where they 
need it most. 

Use an Internal economy to Create large Probability Spaces
As internal economies grow more complex, the probability space of your game 
expands quickly. Games with a large probability space tend to offer more replay 
value, because players will have more options to explore than is generally achiev-
able with a single play-through. Another benefit is that these games can also create 
a more personal experience, because the performance of players and their choices 
directly affect what parts of the probability space open up for exploration. 

Games that use an internal economy to govern character development, technology,  
growth, or vehicle upgrades often use an internal currency to provide options to 
the player. This is a typical gameplay feature found in role-playing games, in which 
players spend in-game money to outfit their characters and spend experience points 
to develop skills and abilities. It is also found in certain racing games that allow 
players to tune or upgrade their vehicles between (or sometimes even during) races. 
As long as there are enough options and the options present really different solutions 
to problems encountered in the game, or are otherwise important to the player, this 
is a good strategy. 

When using an internal economy to customize the gameplay, there are three things 
you need to watch out for. First, in an online role-playing game, if a particular 
combination of items and skills is more efficient than others, players will quickly 
identify and share this information, and the economy will be thrown off-balance. 
Either players will choose only that option, effectively reducing the probability 
space and creating a monotonous experience, or they will complain that they can-
not keep up with players who did. In games like this, it is important to understand 
that customization features are best balanced by some sort of negative feedback. 
Role-playing games usually implement many negative feedback mechanisms for 
this reason: Every time characters gain a level and improved skills, they need more 
experience points to get to the next level. This effectively works to reduce the dif-
ferences in levels and abilities and requires more investment from a player for each 
level earned.

Second, you have to be sure that the probability space is large enough that players do 
not end up exploring it entirely in one play session. For example, if in a role-playing 
game players have a rating between 1 and 5 for the attributes of strength, dexterity, 
and wisdom, and the player can choose which one to increase from time to time, it 
is generally a poor design decision to require them to upgrade all these attributes to 
the maximum in order to finish the game. Similarly, if the player has only limited 
choice over what order to upgrade her attributes, the consequences of those choices 
are reduced. A good way to include choices that have real consequences is to create 
choices that exclude each other. For example, players can generally choose only one 
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class for their character in a role-playing game. Each class should have a unique set 
of different skills and abilities. In Deus Ex, the player is also presented with choices 
to improve the cyborg character that have gameplay consequences: The player 
might be forced to choose between installing a module that will render the charac-
ter invisible for short periods and a special type of subdermal armor that will make 
the character much more resistant to damage. 

Third, you should ideally design your levels in such a way that players can use dif-
ferent strategies to complete them. For example, in Deus Ex, the player can choose 
to develop a character in different ways. The player can focus on combat, stealth, 
or hacking as alternative ways of solving the many challenges in the game. This 
means that almost every level has multiple solutions. This is not an easy balance to 
strike. If you estimate that the player has managed to upgrade three options before 
a certain level, you have to take into account that the player upgraded the combat 
abilities three times, stealth three times, hacking three times, or perhaps all of them 
once. In Deus Ex, this problem is even more pronounced because all the sources of 
experience points that you require to upgrade are not renewable: You gain them for 
progressing and performing certain side quests. Going back to a previous area to 
harvest some more experience is not an option. 

This example illustrates that the levels in games that permit customization must 
be more flexible, and more general, than in conventional action games, because 
you don’t know exactly what abilities the player’s avatar will have. Deus Ex Human 
Revolution contained a flaw: It allowed the players different ways to play the game 
but only one way to beat the boss characters, which defeated the point of allowing 
the players to customize their avatars.

Tips for economy Construction Games
Games in which the player builds an economy, such as construction and manage-
ment simulations, tend to have large and complex internal economies. SimCity is a 
good example. As players zone areas and build infrastructure, they use these build-
ing blocks to craft an economic structure that produces the resources they need to 
increase it even further. Building a game like this requires the designer to assemble a 
toolbox of mechanics that the player can combine in many interesting ways. This is 
even harder than designing a complete, functional, and balanced economy your-
self. You have to be aware of all the different ways your economic building blocks 
combine. When successful, playing the game can be very rewarding, because the 
economy the players build up through play directly reflects their choices and strate-
gies. This is why no two cities in SimCity are alike.
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If you are designing an economy construction game, there are three strategies that 
can help you keep the complexity of your task under control:

n	 Don’t introduce all the player’s building blocks at once. Construction and 
management simulations typically allow the player to build something—a farm, 
factory, or city, for example—out of elementary units, building blocks, that play a 
role in the economy. (In SimCity, these are zoned land and specialized buildings.) It 
is a good idea to gently introduce players to the different elements in your game, a 
few at a time. This makes it easier to control the probability space, at least initially. 
By allowing certain building blocks and disallowing others, you can craft scenarios 
and create special challenges. If your game has no distinct levels or special scenarios, 
make sure that not all building options are available from the start. Have players 
accumulate resources before they can use the more advanced building blocks that 
unlock new options. Civilization is an excellent example of an economy construc-
tion game in which most of the building blocks are locked at the beginning of the 
game and must be unlocked one by one before the players can use them.

n	 Be aware of the meta-economic structure. In an ideal economy construction 
game, the number of ways of putting the economic building blocks together is end-
less. However, in most such games, certain approaches are better than others (and 
in games with a victory condition, some approaches are unwinnable). As a designer, 
you should be aware of typical constructions that might be called meta-economic 
structures. For example, in SimCity, a particular mix of industrial, residential, and 
commercial zones will prove to be very effective. Players will probably discover 
these structures quickly and follow them closely. One difficult, but effective, way of 
dealing with patterns that could become too dominant is to make sure that patterns 
that are effective early in the game cease to be effective later. For example, a particu-
lar layout of zones might be an effective way to grow your population initially but 
causes a lot of pollution in the long run. Slow-working, destructive positive feedback 
is a good mechanism to create this sort of effect.

n	 Use maps to produce variety and constrain the possibility space. SimCity and 
Civilization wouldn’t be nearly as much fun if you could build your city or empire 
on an ideal piece of land. Part of the challenge of these games is to deal with the 
limitations of the virtual environment’s initial state. As a designer, you can use the 
design of the map to constrain players or to present opportunities. So, although 
there might be a best way of building the economy (something that we might call 
a dominant meta-economic structure), it is simply not possible to do so in particular 
terrain. This forces players to improvise, and rewards players who are more flexible 
and versatile. In SimCity, the disaster scenarios in which players can unleash several 
natural disasters on their cities challenges their improvisation and flexibility in a 
similar vein; and of course, SimCity also generates disasters at random, setting back 
the player’s progress.
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Summary
In this chapter, we introduced the essential elements of an internal economy: 
resources, entities, and some of the mechanics that manipulate them, including 
sources, drains, converters, and traders. We examined the concept of economic 
shapes as seen through graphs and showed how different mechanical structures can 
produce different shapes. Negative feedback creates equilibrium, while positive feed-
back creates an arms race among opponents. Implemented another way, positive 
feedback can produce a downward spiral, because a player finds it harder and harder 
to grow his economy. Feedback systems based on relationships between two players 
can produce effects that keep games close or tend to cause the player in the lead to 
stay in the lead.

Game designers can use internal economics in many ways to make games interesting, 
enriching both the progression of a game and the strategic choices a player has to 
make. The internal economy also affects the competitive landscape between diverse 
or closely matched players in multiplayer games. The chapter ended with specific 
suggestions about how to build games in which players construct an economy, as  
in SimCity.

Exercises
1. Identify the resources and economic functions in a published game. (Your 
instructor may specify particular games to study.)

2. Find an example of a game (not referred to in this chapter) that exhibits one of 
these properties: negative feedback with periodic equilibrium, a downward spiral,  
a short-term versus long-term investment trade-off, feedback based on players’  
relative scores, or rubberbanding. Explain which resources are involved, and show 
how the game’s mechanics produce the effect you discovered.

3. Find an example of a game (other than a Zelda game) in which a deadlock may 
occur. Does the game provide a means of breaking the deadlock? Explain.
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In the previous chapter, we showed how a game’s internal economy is one impor-
tant aspect of its mechanics. We used diagrams to visualize economic structures 
and their effects. In this chapter, we introduce the Machinations framework, or 
visual language, to formalize this perspective on game mechanics. Machinations 
was devised by Joris Dormans to help designers and students of game design create, 
document, simulate, and test the internal economy of a game. At the core of this 
framework are Machinations diagrams, a way of representing the internal economy 
of a game visually. The advantage of Machinations diagrams is that they have a 
clearly defined syntax. This lets you use Machinations diagrams to record and com-
municate designs in a clear and consistent way.

We will be using Machinations diagrams throughout this book, so it is important 
that you learn how to read them. This chapter will take you through most of the 
elements that make up a Machinations diagram. However, a word of caution: The 
Machinations framework is a lot to take in at once. The framework comprises many 
interrelated concepts that are best understood together. This means there is no real 
natural starting point to explain all these concepts. We have tried to introduce the 
elements of a Machinations diagram in a logical order, but don’t be surprised if you 
find yourself referring to earlier concepts on occasion.

Machinations is more than just a visual language for creating diagrams, however. 
Dormans has built an online tool for drawing the diagrams and simulating them 
in real time. With it, you can construct and save Machinations diagrams easily, and 
you can also study the behavior of your internal economy. You can find the tool at 
www.jorisdormans.nl/machinations.

Appendix C (which you can find online at www.peachpit.com/gamemechanics) includes 
a tutorial on how to use the Machinations Tool. You can find a quick reference 
guide to the most important elements of Machinations diagrams in Appendix A.

The Machinations Framework
Game mechanics and their structural features are not immediately visible in most 
games. Some mechanics might be apparent to the player, but many are hidden 
within the game code. We need a way to describe and discuss them. 

Unfortunately, the models that are sometimes used to represent game mechanics,  
such as program code, finite state diagrams, or Petri nets, are complex and not 
really accessible for designers. Moreover, they are ill-suited to represent games at a 
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sufficient level of abstraction, in which structural features such as feedback loops 
are immediately apparent. Machinations diagrams are designed to represent game 
mechanics in a way that is accessible yet retains the structural features and dynamic 
behavior of the games they represent.

The theoretical vision that drives the Machinations framework is that gameplay is 
ultimately determined by the flow of tangible, intangible, and abstract resources 
through the game system. Machinations diagrams represent these flows, and they 
let you see and study the feedback structures that might exist within the game 
system. These feedback structures determine much of the dynamic behavior of 
game economies. By using Machinations diagrams, a designer can observe game 
systems that would normally be invisible. Figure 5.1 provides an overview of the 
Machinations framework and its most important components.

The Machinations Tool
You can draw Machinations diagrams on paper or with a computerized drawing tool.  
At the same time, the syntax of the language is exact. It describes unambiguously how 
different elements of an internal economy interact. The syntax of the Machinations 
language is formal enough to be interpreted and executed on a computer; it is close 
to a visual programming language designed to represent game mechanics. 

FIGURe 5.1
The machinations 
framework
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Digital Machinations diagrams are dynamic and interactive representations of game  
mechanics. Unfortunately, we can’t show their dynamic and interactive nature in the   
static illustrations printed in this book. However, Dormans has created a free, online 
application named the Machinations Tool. The tool lets you draw Machinations 
diagrams, simulate their operation in real time, and interact with them. On the 
Machinations website, you can find interactive versions of many of the examples 
that we discuss in this and later chapters. To a certain extent, the digital versions 
of Machinations diagrams are playable. Some diagrams are so much like playing an 
actual game that experimenting with them is fun and challenging in itself.

How the Machinations Tool Works
A static Machinations diagram, such as the ones printed in this book, can display 
only one distribution of resources. However, the Machinations Tool allows you to 
load digital versions of the diagrams and see how they change over time.

The Machinations Tool looks similar to an object-oriented 2D drawing application 
such as Microsoft Visio. It has a workspace in the middle and a variety of selectable 
tools in a side panel. You can create diagrams in the workspace or load them from  
a file.

When you tell the tool to run, it performs the events that are specified by the dia-
gram in a series of time steps or iterations (we use the terms interchangeably). The 
tool changes the state of the diagram. When it has completed one iteration, the tool 
then executes another with the diagram in its new state, and so on, repeatedly until 
you tell it to stop. (You can also build a feature into the diagram that will cause iter-
ation to stop automatically when certain conditions are met—like when the clock 
runs out in basketball.) You can control the length of each time step by setting an 
interval value; if you want the tool to run slowly, you can set the interval to several 
seconds per time step.

Scope and level of Detail
In earlier chapters, we discussed the notion of abstraction: the process of simplifying 
or eliminating details of a system to make it less complex and easier to study and 
tune. For example, the computers that ran the early versions of SimCity did not have 
enough CPU power to represent each automobile individually. Instead, the game 
simply computed traffic density in a general way along each stretch of road and dis-
played an animation that showed how dense it was.

Machinations diagrams permit you to abstract as much or as little as you like. You can  
use them to focus on all, or only part, of a game’s mechanics. Using Machinations 
diagrams, you can design and test your game’s mechanics at different levels of 
detail. How you use them depends on what you want to achieve. For example, it’s 
often sufficient to model a game from the perspective of a single player, even if the 

NOT E You can find 
the machinations Tool, 
and many resources 
for using it, at www.
jorisdormans.nl/
machinations.

NOT E appendix a
contains a tutorial 
explaining how to use 
the machinations Tool.

www.jorisdormans.nl/machinations
www.jorisdormans.nl/machinations
www.jorisdormans.nl/machinations
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game is actually played by multiple players. Once you’ve done that, it’s fairly easy to 
imagine how a diagram might be duplicated and the duplicates combined to repre-
sent the multiplayer situation. 

In other cases, it’s useful to model the mechanics for one player at a higher level of 
detail than other players. Or you can leave out certain aspects of the game, such as 
players taking turns. At a high level of abstraction, there is often little difference in 
the effects of real-time play and turn-based play.

For the examples in this book, we have tried to keep the level of detail low and the 
level of abstraction high so the diagrams don’t get too complex. This way, you can 
easily see the structural features of the internal economy, which will help you to 
understand how these structures create emergent gameplay. For this reason, the  
natural scope of a Machinations diagram is that of a single player and that player’s  
individual perspective on the game system. Although it is certainly possible to 
model multiplayer systems and turn-based play, the framework, as it currently 
stands, does not include features designed to support multiplayer games in particu-
lar. For example, the main input device for interaction with a Machinations diagram 
is the mouse; there is no support for multiple players using multiple input devices. 
The tool has no means of enforcing whose turn it is to interact or to prevent one 
player from clicking a part of the diagram that belongs to another player. It’s a simu-
lation tool, not a tool for building playable games.

Finally, a word of caution: We have used Machinations diagrams to model a number 
of real games, but as we said, we have intentionally simplified them in this book. 
The Machinations framework and diagrams only facilitate understanding of games; 
they aren’t a substitute for studying the game itself.

Machinations Diagram Basic Elements
The Machinations framework is designed to model activity, interaction, and com-
munication between the parts of a game’s internal economy. As shown in the 
previous chapter, a game’s economic system is dominated by the flow of resources. 
To model a game’s internal economy, Machinations diagrams use several types of 
nodes that pull, push, gather, and distribute resources. Resource connections determine 
how resources move between elements, and state connections determine how the 
current distribution of resources modifies other elements in the diagram. Together, 
these elements form the essential core of Machinations diagrams. Let’s take a look  
at these basic elements.



ptg8274339

machinaTiOns 83

C
h

A
p

t
E
r

 5

Pools and Resources
The most basic node type in a Machinations diagram is the pool. A pool is a location 
in the diagram where resources gather. Pools are represented as open circles, while 
the resources that are stored in a pool are represented as smaller, colored circles that 
stack on them (Figure 5.2). If there are too many resources in a pool to show them 
as stacks, the tool displays a number instead.

Pools are used to model entities. For example, if you have a resource called money
and an entity called the player’s bank account, you would use a pool to model the 
bank account. Note, however, that pools cannot store fractional values, only integers. 
The bank account would have to contain only whole dollars or to be characterized 
in terms of cents rather than dollars.

Machinations uses different colors to distinguish among different types of resources. 
A pool can contain resources of more than one type, which means that it can 
be used to model compound entities. However, until you are familiar with the 
Machinations framework, it is best not to mix different resources in a single pool. 
It is easier to have separate pools to, for instance, represent the health, energy, and 
ammunition of a single player, than it is to have one pool with different colored 
resources to represent all of them. 

Resource Connections
Individual resources can move from node to node through a Machinations diagram 
along resource connections that are represented as solid arrows connecting the nodes 
of the diagram (Figure 5.3).

Resource connections can transfer resources at different rates. A label beside the 
resource connection indicates how many resources can move along the connection  
in a single time step. If a resource connection has no label, its rate is considered 
to be 1. You can also make a resource connection transfer an unlimited number of 
resources in a single time step by using the word all as the resource connection’s label.

To help you see how an internal economy works, the Machinations Tool shows 
the resource flow by animating the movement of the resources along the resource 
connections. When the tool runs, you will see the resources traveling along the con-
nection lines from one node to another. 

T IP You can change 
the threshold at which 
the tool switches from 
displaying stacks to 
displaying numbers in 
a pool. With the pool 
highlighted, enter a 
value in the display 
Limit box at the side 
panel. The default is 
25. if you enter a value 
of zero, the pool will 
always display a num-
ber, unless it is empty. 
You can set a different 
value for each pool you 
create.

FIGURe 5.3
resource connections

FIGURe 5.2
Pools and resources
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inputs, outputs, sources, and tarGets

any connection leading into a node is called an input to that node, while any connection 
leaving a node is called an output of that node. similarly, the origin of a connection is the 
node where the connection starts, and its target is the node where it ends (Figure 5.4).

FIGURe 5.4 inputs, outputs, origins, and targets

random FloW rates

as we have explained, games frequently use random number generators to create uncer-
tainty. To model these kinds of games accurately, you can specify random flow rates in 
machinations diagrams by entering them in the Label box. random rates are represented 
in different ways. if you simply enter d, a die symbol (  ) will appear beside the re-
source connection to indicate an unspecified random factor. it means that the rate varies 
somewhat, but you don’t want to specify the details precisely. (if you actually simulate 
the diagram in the machinations Tool, it will use the default value given in the dice box 
in the side panel.)

The machinations Tool can generate random numbers using the same dice notation that 
is commonly used in pen-and-paper role-playing games. in these games, d6 stands for a 
random number produced by a roll of one 6-sided die, whereas d6+3 adds 3 to the same 
dice roll, and 2d6 adds the results of two 6-sided dice and thus will produce a number 
between 2 and 12. Other types of dice can be used as well: 2d4+d8+d12 indicates the 
result of two 4-sided dice added with the results of an 8- and 12-sided die. Unlike pen-
and-paper role-playing games, the machinations Tool is not restricted to dice that are 
commercially available. For example, it can use 5-, 7- or 35-sided dice.

You can also create random values using percentages. a resource connection labeled 
25% indicates that there is a 25% chance that one resource can flow along that connec-
tion at each time step. When using percentages, it is possible to use percentages higher 
than 100%. For example, 250% indicates a flow rate of at least two plus a 50% chance of 
one more.

Figure 5.5 shows various examples of random flow rates.

FIGURe 5.5 different notations for random flow rates

T IP if you do not 
want to watch the 
resources move along 
the resource connec-
tions, you can run the 
machinations Tool in 
quick run mode. You 
will find this under the 
run tab in the side 
panel. This will make 
the tool run much 
faster.

NOT E remember that 
a pool is one type of 
node. There are seven 
other types of nodes, 
each of which serves 
a specialized purpose. 
They are described in 
the section “advanced 
node Types.”

T IP To enter a fixed 
flow rate for a resource 
connection in the 
machinations Tool, 
select the resource con-
nection and then type a 
number or the word all
in the Label box in the 
side panel. 
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Activation Modes
In each iteration, the nodes in a Machinations diagram may fire. When a node  
fires, it pushes or pulls resources along the connections that are connected to  
it (we explain this in the next section). Whether a node fires depends on its  
activation mode. A node in a Machinations diagram can be in one of four different 
activation modes:

n	 A node can fire automatically, which means it simply fires every iteration.  
All automatic nodes fire simultaneously.

n	 A node can be interactive, which means it represents a player action and fires in 
response to that action. In a digital version of a Machinations diagram, interactive 
nodes fire after the user clicks them.

n	 A node can be a starting action, which means that it fires only once, before the 
first iteration. In the Machinations Tool, starting actions fire immediately after the 
user clicks the run button.

n	 A node can be passive, which means it can fire only in response to a trigger gener-
ated by another element (we discuss triggers shortly). 

Each type of node looks different so you can tell them apart (Figure 5.6). Automatic 
nodes are marked with an asterisk (*), interactive nodes have a double outline, start-
ing actions are marked with an s, and a passive node has no special mark.

Pulling and Pushing Resources
When a pool fires, it will try to pull resources through any inputs connected to it. 
The number of resources it pulls is determined by the rate of the individual input 
resource connection—the number beside the line. Alternatively, a pool can be set in  
push mode. In this mode, when the pool fires, it pushes resources along its output con-
nections. Again, the number of resources pushed is determined by the flow rate of  
the output resource connection. A pool in push mode is marked with a p (Figure 5.7). 
A pool that has only outputs is always considered to be in push mode, in which case 
the p marker is omitted.

FIGURe 5.6
activation modes
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If a pool is trying to pull more resources than exist at the far end of its inputs, it will 
handle it in one of two ways: 

n	 By default, a node pulls as many resources as it can, up to the flow rates of its 
inputs. If not enough resources are available, it still pulls those that are.

n	 Alternatively, a node can be set to pull all or no resources. In this mode, when 
not all resources are available, none are pulled. Nodes that are in all or none pull 
mode are marked with an & sign (Figure 5.7).

These rules also apply to pushing nodes: By default, a pushing node sends as many 
resources as are available out along its output resource connection up to the output’s 
flow rate. A pushing node in all or none mode sends resources only when it can sup-
ply all of its outputs. This means that nodes in push mode might be marked with 
both a p and an &.

Figure 5.8 illustrates two situations in which there are not enough resources to 
meet the demand. Node A is user-activated (which is why you see the double line). 
It wants to pull three resources from its upper input and two from its lower one, but 
the pools they are connected to do not contain enough resources to do it. When 
clicked, node A will simply pull the resources that are available.

When node B is clicked, it tries to pull a random number, from one to six, of 
resources from its input. If the random number is four, five, or six, it will pull the 
three that are available.

FIGURe 5.7
Pull and push modes

FIGURe 5.8
Two examples showing 
fewer resources than 
requested



ptg8274339

machinaTiOns 87

C
h

A
p

t
E
r

 5

hourGlass example

Using pools and resource connections, we can construct a simple hourglass (Figure 5.9). 
in this case, two pools are connected by a single resource connection. The top pool (a) 
is passive and contains five resources, while the bottom pool (B) is automatic and starts 
without any resources. after each iteration, B will pull one resource from a until all 
resources have moved from a to B. after that, there are no further changes to the state of 
this diagram.

Time Modes
Games can handle time in different ways. Board games are often turn-based, while 
in many video games the game is active even if the player doesn’t do anything. To 
represent different types of games, a Machinations diagram can operate in one of 
three different time modes:

n	 In synchronous time mode, all automatic nodes fire at a regular interval that you 
can specify for the whole system. All interactive nodes that you click fire at the next 
time step, at the same time when automatic nodes fire. In this mode, all actions in 
one time step take place simultaneously. It is possible for a user to activate several 
different interactive nodes during a time step, but each interactive node can be acti-
vated only once in a time step.

n	 In asynchronous time mode, automatic nodes in the diagram are still activated at 
regular intervals of arbitrary length specified by the user. However, players can acti-
vate interactive nodes at any time within the intervals, and the resulting actions are 
executed immediately, without waiting for the next time step. In this case, an inter-
active node can be activated multiple times during a time step. This is the default 
setting of the Machinations Tool.

T IP You can set the 
time mode of a diagram 
in the machinations 
Tool by using the Time 
mode pull-down menu 
visible in the side panel 
when no element of the 
diagram is selected. in 
either synchronous or 
asynchronous mode, 
you can set the length 
of the interval in the 
interval box, in units of 
a second. The interval 
box also accepts frac-
tional values, so 2.5 
means each time step 
lasts 2.5 seconds.

FIGURe 5.9
hour glass example
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n	 Alternatively, a Machinations diagram can be in turn-based mode. In this mode, 
time steps do not occur at regular intervals. Instead, a new time step occurs after the 
player has executed a specified number of actions. This is implemented by assigning 
a number of action points to each interactive node and allotting players a fixed bud-
get of action points each turn. After all the action points are used, all the automatic 
nodes fire, and a new turn starts. 

resolVinG pullinG conFlicts

it might happen that two pools try to pull resources from the same source simultaneous-
ly. When there are not enough resources to serve both pools, this will lead to a conflict. 
For example, in Figure 5.10 every time step pool B automatically pulls one resource from 
a, both c and d attempt to pull one resource from B. This means that after one time step, 
B will have one resource and c and d will both try to pull it. how this is resolved depends 
on the time mode. in synchronous time mode, neither c nor d can pull the resource. after 
two iterations when B has pulled a second resource, both c and d will pull one resource 
from B. While the diagram runs, c and d will both pull a resource once every two time 
steps simultaneously. as a starts with nine resources, after nine time steps c and d will 
have four resources, and one resource will remain on B. The state of the diagram will 
then no longer change.

in asynchronous or turn-based mode, either c or d will pull one resource. Which pool 
has priority is initially random; subsequently, the priority alternates every time step. This 
means that c and d will both pull one resource from B on alternating time steps, and 
eventually there will be four resources on c and five on d, or vice versa.

FIGURe 5.10 how simultaneous pulls are handled in a  
machinations diagram depends on the diagram’s time mode.

T IP if you set the time 
mode to turn-based 
in the machinations 
Tool, the interval box is 
replaced by an actions/
Turn box, in which you 
can specify the number 
of action points permit-
ted in a single turn. To 
specify the number of 
action points that an 
interactive node con-
sumes when clicked, 
select the node and 
enter a value in the 
actions box in the side 
panel. You may also 
enter a value of zero. 
When all interactive 
nodes cost no action 
points, except a single 
interactive node named 
“end turn” (that has 
no other effect), this 
can be used to create 
a game where players 
can take any number 
of actions until they 
indicate that they are 
finished.
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State Changes
The state of a Machinations diagram refers to the current distribution of resources 
among its nodes. When the resources move from one place to another, the state 
changes. In the Machinations framework, you can use state changes to modify the 
flow rates of resource connections. In addition, you can trigger nodes to fire, or acti-
vate or deactivate them, in response to changes in resource distribution.

To make this possible, Machinations offers a second class of connections called state 
connections. State connections indicate how changes to the current state of a node 
(the number of resources in it) affect something else in the diagram. State connec-
tions are shown as dotted arrows, leading from the controlling node (called the origin)  
and going to a target, which can be either a node, a resource connection, or, rarely, 
another state connection. Labels on the state connection indicate how it changes 
the target. There are four types of state connections that are characterized by the 
type of elements they connect and their labels. The four types are label modifiers, 
node modifiers, triggers, and activators. We explain them in each of the following  
four sections.

LaBeL mOdiFiers
Remember that a label on a resource connection determines how many resources 
may move through that connection in a given time step. Label modifiers connect 
an origin node to a target label (L) of a resource connection (or even another state 
connection). A label modifier indicates how state changes in the origin node (∆S) 
modify the current value of the target label at a current time step (Lt

 ) as indicated 
by the state connection’s own label (M). The new value takes effect in the next time 
step (Lt+1). The amount of the change in the origin node is multiplied by the label 
multiplier’s own label. So, if the label modifier says +3 and the origin node increases 
by 2, then the target label will increase by 6 in the next time step (it will add 3 
twice, once for each change in the origin node). However, if the label modifier says 
+3 and the origin node decreases by 2, then the target label will decrease by 6. Thus, 
the new value of label (Lt+1) that is the target of a single label modifier is given by 
the following formula:

Lt+1 = Lt + M × ∆S

If the label is the target of multiple label modifiers, you will have to take the sum of 
all the changes to find the new value:

Lt+1 = Lt + ∑ (M × ∆S)

The label of a label modifier always starts with a plus or minus symbol. For example, 
in Figure 5.11, every resource added to pool A adds 2 to the value of the resource 
flow between pools B and C. Thus, the first time B is activated, one resource flows to 
A and three resources flow to C. The second time, one resource still flows to A, but 
now five resources flow to C. 

T IP it can be con-
fusing to run the 
machinations Tool and 
watch a label modifier 
causing its target to 
decrease even though 
the label modifier’s 
own label is positive. 
Think of it this way: a
positive label on the 
label modifier causes 
its target to follow the 
origin node, going up 
when the origin goes 
up and going down 
when it goes down. a
negative label on the 
label modifier causes 
its target to invert the 
origin node, going 
down when the origin 
goes up, and vice versa.

NOT E This is the  
first time we have  
used color in a 
machinations diagram. 
here, it is used only for 
visual clarity. however, 
the diagrams can also 
be color-coded, a 
special feature of the 
machinations Tool.  
We explain color- 
coding in more detail  
in chapter 6.
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Label modifiers are frequently used to model different aspects of game behavior. 
For example, a pool might be used to represent a player’s accumulated property in a 
game of Monopoly. The more property a player has, the more likely it is that player 
will collect money from other players. This can be represented by the diagram in 
Figure 5.12. Note that in this case the exact value of the label modifier is unspeci-
fied; it indicates only that the effect on the random flow rate is positive. Also note 
that many mechanics of Monopoly are omitted in this diagram—for example, the 
diagram does not show how a player acquires property. You will find diagrams that 
paint a more complete picture of Monopoly in Chapters 6 and 8.

nOde mOdiFiers
Node modifiers connect two nodes. They enable changes in the state of one node 
(its origin) to modify the number of resources in another node (the target node), 
according to the node modifier’s label (M). When the origin node changes, it influ-
ences the target node in the next time step. More than one origin node can modify 
a target node. The formula for this is nearly identical to the formula used for label 
modifiers:

Nt+1 = Nt + ∑ (M × ∆S)

node modiFiers can create shortaGes

By using negative node modifiers or redistributing resources from a node that has posi-
tive input node modifiers, it becomes possible that the number of resources on a node 
becomes negative. in this case, the negative number of resources indicates a shortage. 
no resources can be pulled from a node that has a shortage, and resources that flow into 
a node with a shortage are used to compensate for the shortage first.

NOT E Figure 5.12 
is not meant to be 
simulated in the 
machinations Tool; 
it only illustrates the 
principle. 

NOT E notice that 
node modifiers can 
create and destroy 
resources if their tar-
get is a pool. This 
is all right for an 
abstract resource such 
as “threat level” but 
is best avoided for 
tangible and intan-
gible resources such 
as “keys” or “health.” 
To create and destroy 
those kinds of 
resources, use other 
types of nodes called 
sources and drains, 
described later in this 
chapter.

FIGURe 5.11
a label modifier affecting the flow rate 
between two pools. at a given time 
step, the flow from B to c is 3 + 2 times 
the number of items in a.

FIGURe 5.12
in Monopoly the state of your property posi-
tively affects the chance other players’ money 
flows to you.
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Figure 5.13 illustrates a node with two modifiers. The number of resources in C will 
be equal to three times the number in A, minus two times the number in B.

Node modifiers can have labels that are fractions, for example +1/3 or -2/4. In this 
case, the number of resources of a target node is modified by the value indicated by 
the fraction’s numerator every time there is a change to the number of resources on 
the origin divided by the fraction’s denominator and rounded down. Thus, when 
the number of resources on an origin node changes from 7 to 8, the number of 
resources on the target is lowered by 2 if the modifier is -2/4, but if the modifier is 
+1/3, the number of resources on the target node does not change.

This sounds complex, but a simple example of the use of node modifiers can be 
found in a real game. In The Settlers of Catan, players gain one point for every village 
in their possession and two points for every city in their possession. The number of 
villages is one origin node, the number of cities is a second origin node, and both 
modify the target node, which is the player’s number of points.

TriGGers
Triggers are state connections that connect two nodes or connect an origin node to 
the label of a resource connection. Triggers are identified by their label, which is an 
asterisk (*). Triggers do not change numeric values the way label and node modifi-
ers do. Rather, a trigger fires when all the inputs of its origin node become satisfied: 
when each input brings in the number of resources to the node as indicated by its 
flow rate. A firing trigger will in turn fire its target. When the target is a resource 
connection, the resource connection will pull resources as indicated by its flow rate. 
A node that has no inputs will fire outgoing triggers whenever it fires (either auto-
matically or in response to a player action or to another trigger).

Triggers are commonly used in games to react to the redistribution of resources. For 
example, in Monopoly players might transfer money to the bank in order to trigger 
the transfer of property from the bank into their possession. This can be represented 
as the diagram in Figure 5.14.

FIGURe 5.13
node modifiers 
affect the number of 
resources in a pool. 

NOT E Triggers are 
commonly used to fire 
passive nodes that do 
nothing until the trig-
ger fires them. This 
enables you to set up  
a passive node that 
fires only when certain 
circumstances arise in 
the game.
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acTivaTOrs
Activators connect two nodes. They activate or inhibit their target node based on the 
state of their origin node and a specific condition. The activator’s label specifies this 
condition. Conditions are written as an arithmetic expression (for example, ==0, <3, 
>=4, or !=2) or a range of values (for example, 3-6). If the state of the origin node 
meets this condition, then the target node is activated (it can fire). When the condi-
tion is not met, the target node is inhibited (it cannot fire). 

Activators are used to model many different game mechanics. For example, in the 
board game Caylus, players place their laborers (a resource) at particular buildings on 
the board to enable them to execute special actions associated with that building. 
For example, a player might place a laborer at a gold mine to collect gold (Figure 
5.15). However, as indicated by the trigger in the figure, in Caylus every time a 
player mines gold, the laborer then returns to the player’s Workers pool.

FIGURe 5.14
a trigger in Monopoly
enables the acquisition 
of property by spend-
ing money.

FIGURe 5.15
Caylus
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Advanced Node Types
Pools are not the only possible nodes in a Machinations diagram. In this section, we 
will describe seven more types of nodes that you can use, including special nodes 
for the four economic functions (sources, drains, converters, and traders) discussed 
in the previous chapter. However, as you will see, some of these nodes can actu-
ally be re-created by using clever constructions of pools, resource connections, and 
state connections. Dormans has created these specialized node types to make the 
diagrams easier to read. If Machinations diagrams were restricted only to pools, the 
diagrams would quickly become cluttered.

Gates
In contrast to a pool, a gate does not collect resources. Instead, it immediately redis-
tributes them. Gates are represented as diamond shapes that often have multiple 
outputs (Figure 5.16). Instead of a flow rate, each output is labeled with a probabil-
ity or a condition. The first type of outputs are referred to as probable outputs while 
the others are referred to as conditional outputs. All outputs of a single gate must be 
of the same type: When one output is probable, all must be probable, and when one 
output is conditional, all must be conditional. 

FIGURe 5.16
different types of gates 
in a machinations 
diagram
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Probabilities can be represented as percentages (for example, 20%) or weights indi-
cated by single numbers (for example, 1 or 3). In the first case, a resource flowing 
into a gate will have a probability equal to the percentage indicated by each output. 
The sum of these probabilities should not add up to more than 100%. If the total is 
less than 100%, there is a chance that the resource will not be sent along any output 
and be destroyed instead. In the case of weights, the chance that a resource will flow 
through a particular output is equal to the weight of that output divided by the sum 
of the weights of all outputs of the gate. In other words, if there are two outputs, 
one with a weight of 1 and the other with a weight of 3, the chance that a resource 
will flow out the first one is 1 in 4, and the chance that it will flow out the second 
one is 3 in 4.

Gates with probable outputs can be used to represent chances and risks. For exam-
ple, in Risk players put armies in danger to gain territories. This type of risk can be 
represented easily by a gate with probable outputs indicating the rates for success or 
failure.

An output is conditional when it is labeled with a condition (such as >3 or ==0 or 
3-5). In this case, all conditions are checked every time a resource arrives at the gate, 
and one resource is sent along every output whose condition is met. The conditions 
might overlap; this can lead to duplication of resources or, when no condition is 
met, to the destruction of the resource. 

Like pools, gates have four activation modes: Gates can be passive, interactive, or 
automatic, or they can be a starting action. Interactive gates have a double outline, 
automatic gates are marked with a star, and gates that are activated once before the 
diagram starts are marked with an s. When a gate has no inputs, it triggers every 
time it fires. This way gates can be used to produce triggers either automatically or 
in response to player actions.

Gates have one of two distribution modes: deterministic distribution and random 
distribution. A deterministic gate will distribute resources evenly according to the dis-
tribution probabilities indicated by percentages or weights if it has probable outputs. 
When it has conditional outputs, it will count the number of resources that have 
passed through it every time step and will use that number to check the conditions 
of its outputs. (It can be convenient to think of a deterministic gate with condi-
tional outputs as a counting gate.) A deterministic gate has no special symbol and is 
represented as a small open diamond.

A random gate generates a random value to determine where it will distribute incom-
ing resources. When it has probable outputs, it will generate a suitable number 
(either a value between 0% and 100% or a number below the total weights of the 
outputs). When its outputs are conditional, it will produce a value between 1 and 6 
to check against the conditions, just as if the diagram rolled a normal six-sided die 
(later we will show you how this value can be changed to represent other types of 
random distribution). Random gates are marked with a die symbol.

T IP When you place a 
gate in a machinations 
diagram in the tool, you 
may set the gate’s type 
by clicking one of the 
Type icons in the side 
panel. The hollow dia-
mond (the default) is a 
deterministic gate. The 
die symbol converts it 
to a random gate.
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Gates might have only one output. Gates with one output act the same way as gates 
with multiple outputs. The gates on the middle row of Figure 5.16 will (from left to 
right) randomly let 30% of all the resources pass, immediately pass the resource to the 
output regardless of the output’s flow rate, and let only the first two resources pass.

All output state connections from a gate are triggers; gates do not accumulate 
resources, and therefore label modifiers, node modifiers, and activators originating 
from a gate serve no purpose. These triggers can also be conditional or probabilistic. 
In this way, gates can be used to control the flow of resources (Figure 5.17).

Sources
Sources are nodes that create resources. They are represented as a triangle pointing 
upward (Figure 5.18). Any node in a Machinations diagram can be automatic (the 
default), interactive, or passive, or it can activate once before a diagram starts. An 
example of an automatic source is the steady regeneration of the protective shields 
of the player’s star fighter in Star Wars: X-Wing Alliance. The action to build armies 
in Risk would be modeled as an interactive source of armies, and passing Go in 
Monopoly would be a passive source of money that is triggered by a game event. The 
rate at which a source produces resources is a fundamental property of a source and 
is indicated by the flow rates of its outputs.

In many ways, a source acts just as a pool without inputs that starts with a suf-
ficiently large (or even infinite) supply of resources. However, to model limited 
sources (see the section “Four Economic Functions” in Chapter 4), it is better to use 
a pool with a specified number of resources in it.

Drains
Drains are nodes that consume resources; a resource that goes into a drain disap-
pears permanently. The Machinations framework includes a special drain node 
represented as a triangle pointing downward (Figure 5.19). The rate of a drain is 
determined by the flow rate of its input resource connection. Some drains consume 

FIGURe 5.17
an automatic, ran-
dom gate controlling 
the flow of resources 
between two passive 
pools. in this case, 
there is a 30% chance 
that three resources 
will flow from a to B 
every time step.

FIGURe 5.18
Unlimited and limited 
sources
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resources at a steady rate, while others consume resources at random rates or inter-
vals. You can also make a drain consume everything its input resource connection is 
attached to by labeling the resource connection with all. (A toilet is a good example: 
When flushed, it drains all the water in the cistern, no matter how much it is.) You 
could in principle represent a drain as a pool with no outputs, but to indicate that 
the resources that flow to a drain are consumed and have no further impact on the 
game, it is better to use a drain node.

Drains are useful for representing processes that remove resources from an economy 
permanently. This might include the effect of wear or friction in a physical system 
or the consumption of ammunition when a weapon is fired in a shooter game.

Converters
Converters convert one resource into another. They are represented as a triangle  
pointing to the right with a vertical line through it (Figure 5.20). Converters are 
designed to model things like factories that turn raw materials into finished prod-
ucts. A windmill, for example, turns wheat into flour. Converters act exactly as a 
drain that triggers a source, consuming one resource to produce another. As with 
sources and drains, converters can have different types  
of rates to consume and produce resources as specified by their inputs and outputs. 
For example, a converter representing a sawmill might turn one tree into 50 boards 
of lumber. 

Since converters are constructed from drains and sources, it is possible to create a 
special construction that might be called a limited converter that can produce only a 
limited amount of something as its output. A limited converter is the combination 
of a drain and a limited source. Figure 5.21 shows two equivalent alternatives to 
construct a limited converter.

FIGURe 5.19
drains

FIGURe 5.20
converters

FIGURe 5.21
Two ways to build a 
limited converter
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Traders
Traders are nodes that cause resources to change ownership when fired: Two players 
could use a trader to exchange resources. Machinations diagrams represent a trader 
as a vertical line over two triangles that point left and right (Figure 5.22). Use trad-
ers when a given number of resources of one type is exchanged for (not converted 
into) a given number of another type. This is ideal for any situation that resembles 
shopping: the merchant receives money, and the customer receives goods in a stated 
proportion (the price). If either the merchant or the customer does not have the 
necessary resources, the trade cannot take place. Fallout 3, in which all traders’ sup-
plies are limited, is a good example. A trading mechanism can be constructed by 
two gates connected by a trigger ensuring that when one resource is received, the 
other is returned in exchange. 

conVerters Vs. traders 

From the perspective of a player, converters and traders have almost the same function: 
Pass a number of resources to it and get a number of other resources in return. From 
the designer’s perspective, however, they are definitely not the same. The difference be-
comes clear from looking at their equivalent constructions in a machinations diagram. a
converter is a combination of a drain and a source. When activating a converter, resourc-
es are actually consumed and produced, and therefore the total number of resources in 
the game might change. in contrast, activating a trader leads only to an exchange; the 
number of resources in the game always stays the same. 

end Conditions
Games end when certain conditions are fulfilled. Sometimes they end when a 
player reaches a certain goal or when time runs out or when all players but one 
are eliminated. Machinations diagrams use end conditions to specify end states. The 
Machinations Tool checks the end conditions in a diagram at each time step and 
stops running immediately when any end condition is fulfilled. End conditions are 
square nodes with a smaller, filled square inside (the same symbol that is used to 
indicate the stop button on most audio and video players). End conditions must 
be activated by an activator. The activators are used to specify the end state of the 

NOT E This is an 
example of a color-
coded diagram, which 
uses color to repre-
sent different kinds of 
resources. in Figure 
5.22, think of red as 
representing money 
and blue as repre-
senting goods. When 
the interactive Trader 
icon is clicked, three 
money resources are 
exchanged for two 
goods resources. We 
explain color-coded 
diagrams in more detail 
in chapter 6.

FIGURe 5.22
Traders
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game. Figure 5.23 shows a couple of examples. The diagram on the left stops after 
the 25 resources are drained automatically. In the example on the right, you win by 
growing more than three apples and oranges.

Modeling Pac-Man
Let’s see how you can use Machinations diagrams to simulate the mechanics of a 
simple game—the arcade classic Pac-Man. We’ll break down the process of modeling 
Pac-Man into six steps and add them to a Machinations diagram, one at a time to 
show how they work. First we’ll identify the game’s most important resources, and 
then we’ll model the individual mechanisms. We’ll give each major mechanism its 
own color for ease of identification. The last of these mechanisms ties everything 
together into a full diagram for Pac-Man. 

We have to warn you that our model is an approximation, not a literal simulation  
of what Pac-Man’s software does. For example, we implemented a system in which 
the ghosts come out of the ghost house at a regular rate, one every five time steps. 
The real game uses a more complex algorithm to determine when they come out. 
We could have modeled it, but it would have made the diagram too complex. Our 
goal here is to teach you to use the Machinations framework, not to create an exact 
copy of the real game, so we have simplified it a bit. 

Resources
We will use the following resources to model Pac-Man:

n	 Dots. Scattered along the maze are the dots that Pac-Man must eat to complete a 
level. Dots are tangible resources in Pac-Man that must all be destroyed to win. The 
game starts with a fixed number of dots. Dots are not produced during play (except 
when going to the next level).

FIGURe 5.23
end conditions
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n	 Power Pills. Every level starts with four power pills, which Pac-Man can eat to be 
able to eat the ghosts. These power pills are a scarce but tangible resource the player 
must use wisely. Like dots, they are only consumed, never produced during play.

n	 Fruits. Occasionally a fruit appears in the maze. Pac-Man can eat the fruit to 
score extra points.

n	 Ghosts. There are four ghosts that chase Pac-Man around the maze. The ghosts 
can be in one of two locations: Either they are in the “ghost house” (the area in the 
middle of the screen) or they are in the maze giving chase. The ghosts are also a tan-
gible resource. (Notice that resources are not always positive things for the player!)

n	 Lives. Pac-Man starts the game with three lives. Lives are intangible resources in 
Pac-Man. If Pac-Man loses all lives, the game ends.

n	 Threat. To simulate the effect of the ghosts giving chase, we will model an 
abstract resource called threat. When the threat passes a certain threshold, Pac-Man 
is caught, and he loses a life. Note that we are not modeling the shape of the maze 
itself (which Machinations cannot do), only the flow of resources and states the 
game can be in.

n	 Points. Every time Pac-Man eats a dot, a fruit, or a ghost, he will consume them 
and score a number of points. The objective of the game is to score as many points 
as possible. Points are intangible resources.

These are all the obvious resources in the Pac-Man economy, and we’ll start our 
model by constructing systems around them. Notice that threat is one we made up 
for the purposes of the simulation, and our decisions about how to model threat are 
subjective and not part of the original game.

Dots
We start with a simple mechanic: Pac-Man eats dots, converting them into points. 
It can be represented with two pools and a converter (Figure 5.24). One pool starts 
with 50 resources in it representing the dots in the maze. The pool that collects 
points starts empty. We also added an end condition that determines that you have 
completed a level after eating all the dots. The converter representing the eating 
action is an interactive node. You can click it to eat the dots. Notice, however, that 
the input of the converter has a random flow rate. Every time you click, there is 
only a partial chance that the action succeeds. The more dots there are, the easier 
it is to eat them. Initially the chance to eat a dot starts at 100%, but every iteration, 
for every dot that is eaten, the chance is lowered by 1%. This reflects the challenge 
to the player in moving around the maze and eating every single dot.

NOT E The real game 
has exactly 240 dots on 
every level. We reduced 
this to 50 to make the 
game shorter.
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In the real game, Pac-Man eats dots 100% of the time until he returns to a place he 
has already been, at which point he eats dots 0% of the time. We had to approxi-
mate this somehow, so we used a diminishing probability of successfully eating a 
dot every time the Eat Dot converter is clicked. In our model, the probability of eat-
ing a dot is initially set to 100%, modified by a label modifier that reflects changes 
in the Dots pool. If the number of dots in the Dots pool changes between one time 
step and the next, that change is multiplied by the label on the state connection, 
and the result is applied to the percentage on the resource connection. When a dot 
is consumed (say, from 50 dots to 49), the change in the state of the Dots pool is -1. 
Multiply that by +1% and you get -1%, and that reduces the probability of success-
fully eating a dot by 1% on the next time step.

The process of creating these approximations is one of the trickier aspects of mod-
eling a game with Machinations, and you have to think carefully about what your 
decisions mean. We chose numbers that feel good to us, but we could have used 
others. For example, we could have chosen a rate of change of 0.25% instead of 1% 
for successfully eating a dot. This would represent a very skilled player who spends 
little time in parts of the maze where he has already been—he’s eating new dots 
most of the time.

In some respects, it’s easier to model a new game than an existing one. When you 
use Machinations to design a new game, you can set up anything you want. The 
tool’s greatest strength is that you can experiment and adjust the details as much  
as you like.

The Fruit Mechanism
The fruit mechanism (Figure 5.25) works similarly to the dot mechanism. However, 
in contrast to dots, a fruit will appear from time to time and disappear automati-
cally if Pac-Man doesn’t eat it. These extra mechanics are represented by the source 
and the drain that are connected to the fruit pool. The fractional rates indicate that 
the fruit source produces a fruit once every 20 iterations and is drained once every 
5 iterations. This means a fruit will appear once every 20 iterations and disappear 5 
iterations later. The interactive node that represents the Eat Fruit action has a fixed 
chance of 50% to actually succeed. This approximates the difficulty of catching the 
fruit as it moves through the maze. However, eating a fruit will produce 5 points 
instead of 1 as eating a dot does. 

FIGURe 5.24
eating dots to score 
points

T IP don’t be confused 
by the fact that the 
probability of success-
fully eating a dot goes 
down even though the 
state connection that 
controls it is labeled 
+1%. remember that 
the function of the state 
connection is to trans-
mit the change in its 
origin pool (multiplied 
by its label). Because 
in this case the change 
is always negative, 
the state connection 
actually transmits a 
negative value.

NOT E in the real 
game, fruit appears 
only twice in a level 
and offers an escalating 
number of bonus points 
depending on which 
level it is. We don’t 
implement multiple lev-
els of the game, so we 
made the fruit process 
shorter, simpler, and 
more frequent so that it 
is easier to observe.
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Ghosts Produce Threat
The four ghosts start in the ghost house, and they enter the maze at a fixed rate of 
one ghost every five iterations. Each ghost that is in the maze will produce a threat, 
which we represent as a black resource generated by an automatic source. Figure 5.26
represents these mechanics. In this diagram, the Maze pool pulls one ghost every 
five iterations. Each ghost in the maze increases the output of the source that pro-
duces the threat. The player has a chance to lower the threat by clicking the random 
interactive Evade gate. When clicked, it has a 50% percent chance of triggering a 
drain that drains nine threat resources. (If this fails, the Evade gate does nothing, but 
the player may click it again to try again.) We arbitrarily chose this value to indicate 
that trying to evade the ghosts doesn’t always work. If you wanted to change the 
diagram to represent a more skilled player, you could increase this percentage.

Capture and loss of life
When the number of threat resources in the Threat pool passes 100, Pac-Man is 
caught, and the player loses a life (Figure 5.27). In the meantime, the ghosts return 
to the ghost house, and the player can start again, unless it was his last life in which 
case the game is over. This process is represented by an automatic trigger (the black 
dotted line) that is activated when the number of threat resources passes the thresh-
old of 100. It goes to a Reset gate, which passes the trigger on in three directions 

FIGURe 5.25
Fruit mechanism 
(purple) added to the 
diagram

NOT E in the real 
game, the algorithm 
that determines when 
ghosts leave their 
house is quite complex. 
We made it simpler 
for teaching purposes. 
also, the ghosts have 
limited artificial intelli-
gence that governs how 
they move; that doesn’t 
appear in our diagram 
because we don’t simu-
late the layout of the 
maze.

FIGURe 5.26
Ghosts create threat 
but can be evaded.
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(the green dotted lines): to a drain that drains a life, to a resource connection that 
returns the ghosts from the maze to their house, and to a drain that drains all the 
built-up threat.

Power Pills
The last mechanism to be added to the diagram is the mechanism that allows play-
ers to eat the ghosts by eating power pills. Figure 5.28 adds this mechanism (light 
blue) to the diagram and represents the full game. Power pills start as a limited sup-
ply. The player can choose to use them by clicking the Eat Power Pill converter to 
convert a power pill into power-up time, an abstract resource that is automatically 
drained. While some power-up time remains, the ghosts stop producing threat, 
and a drain on the threat is activated. At the same time, a new action to eat a ghost 
becomes available. Eating ghosts returns a ghost to the ghost house and also pro-
duces five bonus points.

The Complete Diagram
Figure 5.28 represents a playable approximation of Pac-Man. As we have said,  
certain mechanisms have been omitted, and the game is different in various details. 
It is possible to add these details to a Machinations diagram, but you would be 
unlikely to learn anything new from them. However, you can discover a few impor-
tant things from studying even this simplified diagram. For one thing, players of 
Pac-Man must balance their activities among different tasks: eating dots, evading 

FIGURe 5.27
reset when caught

NOT E in the real 
game, the duration 
of the power pill and 
the number of points 
earned for eating a 
ghost are level-depen-
dent factors, so we 
simplified those 
aspects.

NOT E Because we 
don’t simulate the 
layout of the maze, we 
arbitrarily assigned 
a value of 100 to the 
threat level to deter-
mine when the player  
is caught by a ghost. 
But as in the real game, 
the player can evade 
(using the interactive 
evade gate), which low-
ers the threat. 

T IP note the label 
reading >100 on the 
state connection to 
the reset gate. This 
indicates that the state 
connection is an activa-
tor. activators connect 
two nodes. The first 
node activates the 
second node when the 
condition is met, which, 
in this case, is when the 
Threat pool contains 
more than 100 threat 
resources.
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ghosts, and eating fruit. One of these actions, eating fruit, is fairly isolated from the 
rest of the game. Eating fruit scores bonus points but doesn’t help with anything 
else, which means that novice players who have their hands full with the tasks of 
eating and evading can safely ignore the fruit. The power pills are an important 
resource that must be spent wisely. 

Playing around with the digital version of the Pac-Man diagram even gives you a feel 
of some of the strategic options available in the real game: You can use power pills 
to eat ghosts and score bonus points, but you can also use power pills to safely go 
for the final dots and progress faster. 

FIGURe 5.28
complete diagram for 

Pac-Man

(the green dotted lines): to a drain that drains a life, to a resource connection that 
returns the ghosts from the maze to their house, and to a drain that drains all the 
built-up threat.

Power Pills
The last mechanism to be added to the diagram is the mechanism that allows play-
ers to eat the ghosts by eating power pills. Figure 5.28 adds this mechanism (light 
blue) to the diagram and represents the full game. Power pills start as a limited sup-
ply. The player can choose to use them by clicking the Eat Power Pill converter to 
convert a power pill into power-up time, an abstract resource that is automatically 
drained. While some power-up time remains, the ghosts stop producing threat, 
and a drain on the threat is activated. At the same time, a new action to eat a ghost 
becomes available. Eating ghosts returns a ghost to the ghost house and also pro-
duces five bonus points.

The Complete Diagram
Figure 5.28 represents a playable approximation of Pac-Man. As we have said,  
certain mechanisms have been omitted, and the game is different in various details. 
It is possible to add these details to a Machinations diagram, but you would be 
unlikely to learn anything new from them. However, you can discover a few impor-
tant things from studying even this simplified diagram. For one thing, players of 
Pac-Man must balance their activities among different tasks: eating dots, evading 

FIGURe 5.27
reset when caught

NOT E in the real 
game, the duration 
of the power pill and 
the number of points 
earned for eating a 
ghost are level-depen-
dent factors, so we 
simplified those 
aspects.
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Summary
In this chapter, we described the Machinations framework in some detail. 
Machinations diagrams consist of nodes that perform functions on resources. The 
most basic type of node is the pool, which stores resources. Nodes are joined to each 
other by arrows called resource connections, which govern where, when, and how 
many resources travel from one node to another. State connections, shown as a dot-
ted arrow, permit the operation of the mechanics to change the behavior of resource 
connections and the number of items in a pool and to trigger (or inhibit) events.

A number of specialized nodes perform common functions within an internal 
economy: Sources create new resources, while drains destroy them again, and con-
verters turn one kind of resource into another. Gates distribute the flow of resources 
through them and can also be used to produce triggers.

At the end of the chapter, we built a Machinations model of Pac-Man, adding sys-
tems one at a time to show you how they work. As we have shown, you can use 
Machinations to simulate many, many kinds of game mechanics and economies, 
even those of action games.

In the next chapter, we’ll introduce a few more specialized nodes and then show 
you how to use Machinations to model feedback and randomness. We also discuss 
how you can apply Machinations to several different game genres, with numerous 
examples.

Exercises
The following exercises are designed to test your familiarity with the Machinations 
framework and your understanding of how the tool operates. For clarity, we have 
drawn the diagrams so that all pools show how many resources they contain in  
digits, rather than in stacks.
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1. In each of the following eight diagrams, how many resources will be in pool A 
after one click?

2. In each of the following six diagrams, what is the minimum number of clicks 
required to move all resources to pool A?
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3. In each of the following six diagrams, what is the minimum number of clicks 
required to move all resources to pool A?

4. In each of the following six diagrams, what is the minimum number of clicks 
needed to win the game? Note that some diagrams have more than one interactive 
element.



ptg8274339

C
h

A
p

t
E
r

 6

Common Mechanisms
In the previous chapter, we introduced the Machinations framework and showed 
how you can use Machinations diagrams to model the internal economy of games. 
In this chapter, we introduce some advanced features of the Machinations framework   
that will permit you to simulate and study more complex economies. We also dis-
cuss how feedback structures can be read from a Machinations diagram. As we 
discussed in Chapter 3, “Complex Systems and the Structure of Emergence,” feed-
back plays an important role in the creation of emergent behavior, and in this 
chapter we outline seven important characteristics of feedback structures. Finally, 
we address ways you can use randomness to add unpredictability and variation to 
the behavior of your internal economy. This way, Machinations diagrams, both 
static and digital versions, become an essential tool to help designers understand 
the nature of the dynamic system of game mechanics that drives the gameplay of 
their game.

More Machinations Concepts
To start with, we introduce a few additional features of digital Machinations dia-
grams that we didn’t include in Chapter 5, “Machinations.” In this section, we’ll 
explain these extra features.

Registers
Sometimes you’ll want to make simple calculations in a Machinations diagram 
or use numeric values that come from player input. While it is possible to model 
most of these features with pools, interactive sources, interactive drains, and state 
connections, the resulting diagram is awkward to read. To simplify things, digital 
Machinations diagrams offer an additional node type: registers. Registers are repre-
sented as solid squares with a number indicating their current value.

In many ways, a register acts just like a pool that always displays its value as a num-
ber. A register can be passive or interactive. A passive register has a value that is set 
by input state connections. When a diagram is not running, this value is displayed 
as x because it is not yet determined. An interactive register has an initial value that 
you can set while designing the diagram. In addition, it has two buttons that allow 
the user to modify its value while the diagram is running. An interactive register is 
the equivalent of a pool connected to an interactive source and an interactive drain 
(Figure 6.1).

107
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Registers do not collect resources like pools do, so you should not connect resource 
connections to a register. You can connect node modifier state connections to regis-
ters in the same way you can connect state connections to a pool. 

Passive registers allow you to perform more complex calculations. Every state con-
nection that you connect to a register as an input is assigned a letter automatically. 
You can give the register a formula that uses these letters to determine the value of 
the register (Figure 6.2). In addition, you can also use the labels max and min to set 
a passive register to the maximum or minimum value of its inputs.

Intervals
Sometimes you want a node in a Machinations diagram to be activated less often 
than every time step. You can accomplish this by creating flow rates with an inter-
val. Intervals are created by using a slash (/) in the flow rate: A source that has an 
output rate of 1/5 will produce 1 resource every 5 time steps. (See Figure 6.3 for 
three examples.) A similar effect can be created when the output rate is set to 0.2. 
However, using intervals allows you more control over the interval and allows you 
to produce resources in bursts. For example, a production rate of 5/10 would pro-
duce 5 resources at once every 10 steps. 

FIGURe 6.1
an interactive regis-
ter and its equivalent 
construction

FIGURe 6.2
Performing calcula-
tions using passive 
registers

FIGURe 6.3
intervals
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You can use random flow rates with intervals. A production rate of D6/3 will pro-
duce between one and six resources every three steps. Intervals can be random as 
well. A production rate of 1/(D4+2) indicates that one resource is produced every 
three to six steps. Random intervals can be a good way to keep the player’s attention 
on the game (see the “Random Intervals in Games” sidebar). You can even use a pro-
duction rate of D6/D6, which indicates between one and six resources are produced 
every one to six steps. 

random interVals in Games

in his article “Behavioral Game design,” John hopson (2001) reports that experiments in 
behavioral psychology suggest that player behavior is affected by chance and the interval 
at which the player is rewarded for actions. When a player has a chance to be rewarded 
at regular intervals, the player’s attention and activity will spike at those intervals. When 
those intervals have random lengths, players will be active most of the time because they 
never quite know when their next action might lead to a new reward. Use this powerful 
knowledge with caution.

Intervals can also be modified dynamically. Label modifiers that have an i as a unit 
of their modification (for example, +1i or -3i) will change their target’s interval. For 
example, in Figure 6.4, the interval of the output of the source A is increased as 
more resources arrive in pool B.

Multipliers
When working with random flow rates, it is often useful to combine multiple 
chances into one value. For example, a source might have two chances to produce 
a resource during every time step. You can represent this with two outputs with a 
probable flow rate for each (Figure 6.5, left side), but as long as the probabilities are 
equal for each chance, using a multiplier is more convenient. A multiplier is created 
by adding n* before the flow rate, for example 3*50%, 2*10%, or 3*D3 (Figure 6.5,
right side). The two constructions are equivalent, but the one on the right is less 
cluttered. If you need to use different probabilities, however, you will have to create 
a construction like the one on the left.

FIGURe 6.4
dynamic intervals

FIGURe 6.5
multiplying a flow rate
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Like intervals, multipliers can also be modified dynamically. Label modifiers that 
have an m as a unit of their modification (for example, +2m or -1m) will change 
their target’s multiplier. For example, the multiplier of the input of the drain A in 
Figure 6.6 is controlled by the register B. If you run this diagram in the tool and 
click A (an interactive drain), it will attempt to drain two items from the pool, with 
a 50% chance of success for each one. If you change the value in the B register, you 
can raise or lower the number of items that A attempts to drain.

Just like any other label modifier, a label modifier with an m on its own label trans-
mits the change in the source node. Although the value of register B in Figure 6.6 is 
the same as that on the resource connection, it doesn’t have to be. If the label modi-
fier’s connection were +2m, it would transmit double the change in B.

Delays and Queues
In many games, producing, consuming, and trading resources takes time. The 
time it requires to complete an action might be crucial for the game balance. In a 
Machinations diagram, a special node can be used to delay the flow of resources as 
they travel. A delay is represented as a small circle with an hourglass inside (Figure 
6.7).

The label on the delay’s output indicates how many time steps a resource is delayed. 
(Note that this is different from most labels on resource connections, which ordi-
narily represent a flow rate.) This time is dynamic. Other elements in the diagram 
can change the delay setting through label modifiers. You can also specify a random 
delay time using dice notation. A delay can process multiple resources simultane-
ously. This means that all incoming resources are delayed for the specified number 
of time steps irrespective of the number of resources currently being delayed. 

A delay can also be turned into a queue. A queue has two hourglass symbols instead 
of one. Queues process only one resource at a time. For Figure 6.8, this would mean 
that only one resource is passed every five time steps.

FIGURe 6.6
a dynamic multiplier

FIGURe 6.7
Producing sol-
diers takes time and 
resources.
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Delays and queues can use state connections that communicate the number of 
resources they are currently processing (including the number of resources waiting 
in a queue to be processed). This can be useful to create timed effects. For example 
in Figure 6.9, activating delay A will activate source B for 10 steps. You can activate 
the delay as long as there are resources on pool C. A construction like this can be 
used to improve the construction discussed for power pills in Pac-Man in the section 
“Power Pills” in Chapter 5.

Reverse Triggers
In some games, bad things happen when the player doesn’t have the resources 
required by an automatic or randomly triggered element. For example, in Civilization
when the player runs out of gold to pay the upkeep for his cities’ improvements, 
the game automatically sells some of them. To simulate this type of event, the 
Machinations diagrams include a reverse trigger. A reverse trigger is a state connec-
tion that is labeled with a !. If its source node tries to pull resources but cannot pull 
all resources as indicated by the source’s input connections, the reverse trigger will 
fire its target node. Figure 6.10 illustrates how a reverse trigger can be used to model 
the automatic sale of city improvements in Civilization.

FIGURe 6.8
Building orders are 
queued and executed 
one at a time.

FIGURe 6.9
Using a delay to create 
a timed effect

FIGURe 6.10
automatic sale of a city 
improvement when the 
player runs out of gold 

in Civilization
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Reverse triggers can also be used to trigger end conditions to make a game stop. For 
example, in Figure 6.11 this construction is used to end a game when a player takes 
more damage after she has lost all hit points. (In the figure the damage is caused by 
the user clicking the interactive damage drain. Obviously in most games damage will 
be caused by triggers produced by other mechanisms.)

Color-Coded Diagrams
Machinations diagrams can include color coding to help you distinguish among dif-
ferent types of resources as they flow around. To create a color-coded diagram in the 
online tool, simply select the Color-Coded option in the diagram settings dialog in 
the side panel. 

In a color-coded Machinations diagram, the color of resources and connections is 
meaningful. If a resource connection has a different color than its source, it will 
pull only resources of its own color. Likewise, if a state connection has a different 
color from its source, it will respond only to the resources of that color and ignore 
all other resources. Color-coding allows you to store different resources in the same 
pool, and for certain games this is very useful. Later in this chapter, we’ll show how 
color-coding can be used to effectively model different unit types in a strategy game. 

In a color-coded diagram, one source or converter can produce different colored 
resources if its outputs are of a different color than the source or converter itself. 
Gates can use different colored outputs to sort resources of different colors. 

Figure 6.12 illustrates how color coding can be used. In this figure, source A pro-
duces a random number of orange and blue resources every time it is activated. Both 
are collected at pool B. The number of orange resources in B increases the number 
of blue resources produced at A, and vice versa. The user can activate drain C only 
when there are at least 20 orange and 20 blue resources in pool B.

In a color-coded diagram, a gate can be used to change the colors of resources that 
pass it. If the gate has color-coded outputs, it will try to sort resources by their 
color, sending red resources along a red output, and so on. However, if the incom-
ing resource color doesn’t match any of the outputs, the gate selects an appropriate 
output (based on random numbers if it is a random gate or spreading the resources 
according to the weighting of the outputs if it is a deterministic gate) and changes 

FIGURe 6.11
ending a game when 
a player takes damage 
when she is out of  
hit points.

T IP if you don’t check 
the color-coded option 
in the tool, you can still 
color elements of your 
diagram for illustra-
tion purposes, but the 
simulation will act as 
if everything is all the 
same color.

FIGURe 6.12
a color-coded diagram
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the resource to that color. For example, Figure 6.13 uses this construction to ran-
domly produce red and blue resources with an average proportion of 7/2.

Delays and queues can use color coding. By giving them outputs with different col-
ors, they will delay resources of the corresponding color by a number of time steps 
indicated by that output. For example, Figure 6.14 represents the mechanics of a 
game where players can build knights and soldiers. Knights are represented as red 
resources, and soldiers are represented as blue resources. Knights cost more gold and 
take more time to build.

Feedback Structures in Games
The structure of a game’s internal economy plays an important role in a game’s 
dynamic behavior and gameplay. In this structure, feedback loops play a special 
role. A classic example of feedback in games can be found in Monopoly where the 
money spent to buy property is returned with a profit because more property will 
generate more income. This feedback loop can be easily read from the Machinations 
diagram of Monopoly (Figure 6.15): It is formed by the closed circuit of resource and 
state connections between the Money and Property pools. 

FIGURe 6.13
Producing resources 
with random colors

FIGURe 6.14
Using color coding to 
build different units 
with one building 
queue

FIGURe 6.15
Monopoly 
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Closed Circuits Create Feedback
A feedback loop in a Machinations diagram is created by a closed circuit of con-
nections. Remember that feedback occurs when state changes create effects that 
ultimately feed back to the original element. A closed circuit of connections will 
cause this effect.

A closed circuit of only resource connections (as in Figure 6.16) cannot display very 
complex behavior. The resource is pulled through the pools in circles creating a sim-
ple periodic system, but nothing more interesting can happen.

The most interesting feedback loops consist of a closed circuit that mixes resource 
connections and state connections. The loop should contain at least one label modi-
fier or activator. For example, the mechanism in Figure 6.17 uses an activator to 
maintain the resources in the pool at about 20. It acts the way a heating system does 
to keep a room warm in cold climates: It turns on a heater with a fixed output when 
the temperature drops below 20. The graph in the same figure displays the tempera-
ture over time.

charts in machinations diaGrams

Using the online tool for machinations diagrams, it is very easy to produce charts track-
ing the number of resources in a pool over time. The chart in Figure 6.17 is produced by 
the tool. You can add a chart to a diagram like any other element. To start measuring the 
number of resources, simply connect a pool to the chart with a state connection. When 
selected, this connection is displayed as normal, but when it is not selected, it is reduced 
to two small arrows to avoid visual clutter.

FIGURe 6.16
Feedback created by 
only resource connec-
tions. The resource 
simply goes round  
and round.

FIGURe 6.17
heater feedback  
mechanism using  
an activator
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You can build a similar system using a label modifier instead (Figure 6.18). In this 
case, the heater’s output rate is adjusted by the actual temperature, creating a more 
subtle temperature curve. This simulates a heater that can produce varying amounts 
of heat rather than a fixed amount, as in Figure 6.17.

Feedback by Affecting Outputs
A feedback loop can also be created by a circuit of connections that affects the output 
of an element. For example, consider a Machinations diagram for an air conditioner 
(Figure 6.19). The higher the temperature, the faster the temperature is drained. 

Any changes that affect the output of a node can also close a feedback loop. In this 
case, output can be affected directly by a label modifier or by a trigger or activator 
affecting an element at the end of the resource that is able to pull resources (such as 
a drain, converter, or gate, as in Figure 6.20).

FIGURe 6.18
heater feedback  
mechanism using a 
label modifier

FIGURe 6.19
an air conditioner  
in machinations

FIGURe 6.20
closing a feedback 
loop by affecting  
the output
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Positive and Negative Feedback basketball
In Chapter 4, we briefly introduced Marc LeBlanc’s concept of positive and nega-
tive feedback basketball to explain the effects of positive and negative feedback on 
games. In this section, we’ll discuss the idea in more detail and show how to model 
it in Machinations.

Positive feedback basketball is played like normal basketball but with the follow-
ing extra rule: “For every N points of difference in the score, the team that is ahead 
may have an extra player in play.” Figure 6.21 shows a model of positive feedback 
basketball. It uses a very simple construction to model basketball itself: Every player 
on a team has a particular chance to score every time step. Teams initially consist of 
five players, so their chance to score is represented as a source with an initial pro-
duction rate of five (for simplicity, we assume that a basket is worth one point, not 
two, and we ignore three-point shots and free throws). Next comes a gate with a 
percentage; this indicates the percentage of player attempts that actually succeed in 
scoring. As you can see, the blue team is much better than the red team is; the blue 
team’s chance of scoring is 40% while the red team’s chance is only 20%. A pool 
called Difference keeps track of the difference in the points scored, because every time 
blue scores, a point is added to the Difference pool, and every time red scores, a point 
is subtracted. Each team can field one more player for every five points that it leads 
by—if it’s ahead by five, it gets one more player; if it’s ahead by 10, it gets two; and 
so on. The development of the scores and the difference in the scores are plotted 
over time in the chart. As you can see, the score of the better team quickly spirals 
upward as the difference increases, allowing them to field more and more players.

In negative feedback basketball, the extra rule is reversed: The losing, rather than 
the leading, team can field an extra player for every N points of difference. Again, 
this can be easily modeled as a Machinations diagram, simply by reversing the signs 
of a few state connections. The chart that is produced by running the diagram is 

FIGURe 6.21
Positive feedback  
basketball. Team sizes 
are prevented from 
dropping below 5 by 
setting their minimal 
value to 5. 
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harder to predict. Without looking at Figure 6.22, can you guess what happens to 
the points of both teams and the difference in scores?

The chart in Figure 6.22 surprised us when we first produced it. Where you might 
expect the negative feedback to cause the poorer team to get ahead of the better 
team, it never does. What happens is that the negative feedback stabilizes the differ-
ence between the two teams. At some point, the poorer team is so far behind that 
their lack of skill is compensated for by their team size, and beyond this point, the 
difference doesn’t change much.

Another interesting effect of feedback occurs when you have two teams of similar 
skill play positive feedback basketball. In that case, both teams will score at a more 
or less equal rate. However, once one of the teams by chance takes a lead, the posi-
tive feedback kicks in, and they can field more and more players. The result might 
look something like Figure 6.23. 

FIGURe 6.22
negative feedback 
basketball

FIGURe 6.23
Positive feedback bas-
ketball between two 
equal teams. notice 
the distinctive slope 
in the line that depicts 
the difference between 
the scores after 
roughly 30 steps.
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Multiple Feedback loops
In the section “Categorizing Emergence” in Chapter 3, we discussed Jochen Fromm’s 
typology of emergent systems. According to Fromm, systems with multiple feedback 
loops display more emergent behavior than systems with only one feedback loop. 
This is also true for games. Most games need more than one feedback loop to pro-
vide interesting emergent behavior. The board game Risk is an excellent example of 
this. In Risk, no fewer than four feedback loops interact.

the ideal number oF Feedback loops

it is clear that games with multiple feedback loops exhibit more emergence than games 
with only one or even no feedback loop at all. however, the ideal number of feedback 
loops is much harder to determine. We have found that somewhere between two and 
four major feedback loops seems to be sufficient for most types of games. depending on 
how complex you want the game to be, you can try more feedback loops, but you have 
to be careful not to create a game that is too hard to understand. remember that as a 
designer you have a good grasp over the feedback loops that operate within your game, 
but your players do not. 

another important distinction here is the difference between major and minor feedback 
loops. sometimes a feedback loop acts only locally and has little effect on any other 
mechanism—a minor feedback loop. in contrast, a major feedback loop involves multiple 
important mechanisms of your game and has a much greater impact on the gameplay. 
You might have more than four minor feedback loops without complicating the rules too 
much, but including more than four major feedback loops will make your game difficult 
to master.

The core feedback loop in Risk involves the resources armies and territories: The more 
territories a player holds, the more armies he can build. Figure 6.24 depicts this core 
feedback loop. The player expends armies to gain territories by clicking the interac-
tive Attack gate. The armies that succeed pass to the converter, which turns them 
into territories. The label +1/3 of the label modifier that sets the output flow rate of 
the interactive source Build indicates that the output of the source goes up by one 
for every three territories the player has.

T IP Like Monopoly, 
Risk is a classic board 
game that illustrates 
certain principles of 
mechanics design well. 
if you are not famil-
iar with Risk, you can 
download a copy of the 
rules at www.hasbro.
com/common/instruct/
risk.pdf. The Wikipedia 
entry for Risk also 
includes an extensive 
analysis.

FIGURe 6.24
The core feedback loop 
involving armies and 

territories in Risk

www.hasbro.com/common/instruct/risk.pdf
www.hasbro.com/common/instruct/risk.pdf
www.hasbro.com/common/instruct/risk.pdf
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When a player gains a territory, he receives a card. These may be collected into sets 
and exchanged for more armies. The second feedback loop in Risk is formed by the 
cards that are gained from a successful attack (Figure 6.25). Only one card can be 
gained every turn, so the flow of cards passes through a limiter gate first. Collecting 
a set of three cards can be used to generate new armies. The interactive converter 
Trade Cards changes three cards into a random number of armies. 

The third feedback loop is activated when a player manages to capture an entire 
continent, which will give the player bonus armies every turn (Figure 6.26). In Risk, 
predefined groups of territories form continents as indicated by the design of the 
game board. In the diagram, this level of detail is not possible, so instead the con-
struction is represented as a pool connected to another pool with a node modifier. 
In this particular case, five territories count as one continent, which will in turn 
activate the bonus source.

Finally, the fourth feedback loop is activated by the loss of territories because of the 
actions of other players. Which player chooses to attack which other player depends 
on many factors, including the attacker’s position, strategy, and preferences. 

NOT E in the real 
game, not every trio of 
cards generates armies, 
and some trios gener-
ate more armies than 
others. We have simpli-
fied this by making the 
exchange rate of cards 
for armies random. in 
Figure 6.25, this is indi-
cated by the die symbol 
labeling the output 
of the Trade cards 
converter.

FIGURe 6.25
The second feedback loop in 

Risk, involving cards and armies

FIGURe 6.26
The third feedback loop in 

Risk: bonus armies through 
the possession of continents
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Sometimes it makes sense to prey on weaker players in order to gain territories or 
cards, and sometimes it is important to oppose stronger players to keep them from 
winning. The number of continents a player holds has a strong influence on this. 
Because continents generate bonus armies, players will generally attack aggressively 
to prevent others from keeping a continent (Figure 6.27). The important thing is 
that in Risk there is some form of friction caused by other players, and the influence 
of this friction increases when the player has captured continents. This type of fric-
tion is a good example of the negative feedback that can almost always be found in 
multiplayer games where players can act against each other, especially if they are 
allowed to collude against the lead player.

Figure 6.28 shows the entire Risk diagram. It does not model the entire game 
exactly; like our Pac-Man example in Chapter 5, this is an approximation. See the 
“Level of Detail” sidebar.

FIGURe 6.27
The fourth feedback 

loop in Risk: capturing 
continents provokes 
increased attacks by 
other players.

FIGURe 6.28
The complete  

Risk diagram

NOT E in the diagram, 
the loss of territories 
taken by other play-
ers’ attacks is indicated 
by the multiplayer 
dynamic label (an icon 
depicting two pawns) 
affecting the resource 
flow to the Opposition 
drain. see table 6.2 for 
more information about 
this and other types 
of nondeterministic 
behavior.
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leVel oF detail

You might have noticed that in the diagram in Figure 6.28, we use different levels of 
detail. many of the game’s details are specified by the diagram: You can build one more 
army for every three territories, continents give you a bonus of two armies every turn, 
and so on. at the same time, some details are omitted: how many armies are generated 
by the cards and how many territories are lost to the opposition are both represented by 
symbols indicating a random value (the die and the multiplayer dynamic). in addition, 
the positive effect on the consumption rate of the opposition drain is not precisely speci-
fied. as long as machinations diagrams are purely static, this is not a problem. in this 
case, we are just interested in the structure of the mechanics, not in the exact details. For 
this structure, it is only important to know that having a continent will cause opponents 
to fight more fiercely. in many cases, omitting some of the details makes the structure 
easier to understand. however, to run the diagram in the machinations Tool, you would 
have to specify these items.

Feedback Profiles
The first three feedback loops in Risk all are positive: More territories or cards lead 
to more armies, which lead to more territories and cards. Yet they are not the same: 
They have different profiles. The feedback of capturing territories to be able to build 
more armies is straightforward, is fairly slow, and involves a considerable invest-
ment of armies. Often players lose more armies in an attempt to conquer territories 
than they regain with one build. This leads to the common strategy to build during 
multiple, consecutive turns. The feedback of cards is much slower than the feedback 
of territories. A player can get only one card each turn, and she needs at least three 
to create a complete set. At the same time, the feedback of the cards is also much 
stronger: A player might get between four and ten armies depending on the set she 
collects. Feedback from capturing continents operates faster and more strongly still, 
because it generates bonus armies every turn. This feedback is so strong and obvious 
that it typically inspires fierce countermeasures from other players.

These properties are important characteristics of the feedback loops that have a 
big impact on the dynamics of the game. Players are more willing to risk an attack 
when it is likely that the next card they will get completes a valuable set: It does not 
improve their chances of winning a battle, but it will increase the reward if they do. 
Likewise, the chance of capturing a continent can inspire a player to take more risk 
than the player should. In Risk the player’s risks and rewards constantly shift, mak-
ing the ability to understand these dynamics and to read the game a critical skill. 
These three positive feedback loops play an important role, but simply classifying 
them as positive does not do justice to the subtlety of the mechanics. It is important 
to understand how quickly and how strongly each operates.
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Seven Feedback Characteristics
Table 6.1 lists seven characteristics that, together with the determinability char-
acteristic discussed next, form a more detailed profile of a feedback loop. At first 
glance, some of these characteristics might seem as if they overlap, but they do not. 
It is easy to confuse positive feedback with constructive feedback and negative feed-
back with destructive feedback. However, positive destructive feedback does exist. 
For example, losing pieces in a game of chess will increase the chance of losing more 
pieces and losing the game. Likewise, in Civilization, the growth of a city is slowed 
down by the corruption that is caused by large cities: negative feedback on a con-
structive effect.

TAble 6.1 
seven characteristics  
of Feedback
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The strength of a feedback loop is an informal indication of its impact on the game. 
Strength cannot be attributed to a single characteristic; it is created by the interac-
tions of several. For example, permanent feedback with a little return can have a 
strong effect on the game.

Changes to the characteristics of a game’s feedback loops can have a dramatic effect 
on the game. Feedback that is indirect and slow but with a lot of return and not 
durable has a strong destabilizing effect. In this way, even negative feedback can be 
used to destabilize a system if it is applied erratically or when its effects are strong 
but slow and indirect. It means that at a much later point in the game something 
big will happen that is difficult to predict or prevent.

The profile of feedback created by direct interaction in a multiplayer game, such 
as the ability to target specific players for an attack in Risk, can change depending 
on the players’ strategies. Feedback from direct interaction often is negative and 
destructive: Players act against, or even conspire against, the leader. At the same 
time, it can turn into positive and destructive feedback when someone starts to prey 
on the weaker players. 

Feedback characteristics can be read from a Machinations diagram, although this 
is easier for some characteristics than it is for others. In general, use the following 
guidelines:

n	 To determine a feedback loop’s effect, look at how it is connected to different 
end conditions. If the feedback mechanism is directly connected to a winning con-
dition, it is probably constructive; if it is directly connected to a losing condition,  
it is probably destructive.

n	 A feedback loop’s investment can be determined by looking at how many 
resources are consumed to activate the mechanism. In addition, feedback mech-
anisms that require players to activate many elements usually have a high 
investment, as these mechanisms generally require more time or turns to activate. 

n	 A feedback loop’s return can be determined by looking at how many resources 
are produced by the mechanism. Return must be compared to investment to paint  
a complete picture.

	n	 The speed of a feedback loop is determined by the number of actions and ele-
ments involved to activate the feedback loop. Feedback loops that contain delays 
and queues are obviously slower than those loops that do not include these ele-
ments. Feedback loops that involve only automatic nodes tend to be faster than 
feedback loops that include many interactive nodes. Likewise, in most cases, feed-
back loops that consist of mostly state connections tend to be faster than feedback 
loops that consist of mostly resource connections.

n	 The range of a feedback loop is easily determined by the number of elements it 
consists of. Feedback loops that consist of many elements have a high range.
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n	 Most feedback loops are fundamental parts of their game’s economy, so their 
durability is extended or permanent. To identify a feedback loop with limited dura-
bility, see whether any part of the loop depends on limited resources that can never 
be recovered or are recovered only at long intervals. 

n	 The feedback loop’s type is probably the trickiest characteristic to determine 
simply by looking at a Machinations diagram. Positive label modifiers affecting the 
flow of production mechanisms create positive feedback, but positive label modifi-
ers affecting the flow toward a drain or a converter tend to create negative feedback. 
The type of feedback is much harder to determine when the feedback loop involves 
activators. To determine the type of a feedback mechanism, you must really con-
sider the entire mechanism and all its details.

Determinability
In many games, the strength of a feedback loop is affected by factors such as chance, 
player skill, and the actions of other players. Machinations diagrams represent these 
factors by different symbols that stand for nondeterministic mechanisms. Table 6.2
lists the symbols used to indicate different types of nondeterministic behaviors.  
You can use these icons to annotate connections and gates in a diagram. A single 
feedback loop can be affected by multiple and different types of nondeterministic  
resource connections or gates. For example, the feedback through cards in Risk
(Figure 6.25) is affected by a random gate and a random flow, increasing its unpre-
dictability. The loss of territories is affected by a multiplayer dynamic, namely, 
attacks by other players.

TAble 6.2
Types of 
determinability 
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The skill of a player in performing a particular task can also be a decisive factor in 
the nature of feedback, as is the case in many computer games. For example, Tetris
gets more difficult as the blocks pile up, and the rate at which players can get rid 
of the blocks is determined by their skill. Figure 6.29 shows this as an interac-
tive gate that controls a converter. Skillful players will be able to keep up with the 
game much longer than players with less skill. Here player skill is a factor on the 
operational or tactical level of the game. In games of chance, tactics, or games that 
involve only deterministic feedback, a whole set of strategic skills can be quite deci-
sive for the outcome. This feedback loop in Tetris is also affected by randomness. 
The shape of the block is randomly determined by the game. Although the skill is 
generally more decisive in Tetris, the player just might get lucky.

usinG nondeterministic symbols  
in the machinations tool

You can use the symbols for deterministic behavior in digital machinations diagrams. 
if you set the label of a connection to D, it will display a dice symbol. The multiplayer 
symbol is created by setting the label to M, the player skill symbol is created by setting 
the label to S, and the strategy symbol is created by setting the label to ST (for strategy).

Because the machinations Tool cannot actually simulate the effects of player skill or 
other players’ actions, functionally these symbols all work the same way when the tool 
is running: They produce a random value from 1 to 6. By changing the diagram settings, 
you can specify other values as you wish. even though they work the same way, Joris 
dormans has provided the nondeterministic symbols so that the diagrams are easier to 
read. When you see the joystick symbol, you know that it stands for effects influenced by 
variations in player skill.

FIGURe 6.29
Tetris



ptg8274339

126 Game mechanics: advanced Game desiGn

Randomness vs. Emergence
Games with many random factors become hard, if not impossible, to predict. In 
games that have too many random factors, players often feel that their actions have 
little impact on the game. One of the strengths of creating games with emergent 
gameplay is that most of the dynamic behavior of the game arises from the com-
plexity of the systems, not from the number of dice rolled.

It is our conviction that a well-designed game relies on pure chance only sparingly. 
A game with only a few deterministic feedback loops can show surprisingly dynamic 
behavior. When you use emergence rather than randomness to create dynamic 
gameplay with uncertain outcomes, all decisions made by the player will matter. 
This encourages her to pay attention and engage with the game. 

Frequency and impact oF randomness

When using randomness, you should be aware of how its frequency and impact affect 
the game. The impact of the randomness of a mechanic is often related to the range and 
distribution of random numbers created. For example, in some board games, players roll 
one die to move, and in others they roll two. With one die, they have an equal chance of 
moving from 1–6 spaces. With two, they can move much farther, from 2–12 spaces, but 
the probability distribution is not equal; they are more likely to roll a 7 than any other 
number.

When designing games of emergence, it is almost always best to aim for random me-
chanics that operate frequently but have a relatively low impact on the game. increasing 
the frequency of a random mechanism is generally a good way of reducing its impact: 
You can expect that in the long run the odds even out. 

There are two situations in which adding randomness is a useful design strategy:  
It can force players to improvise, and it can help counter dominant strategies.

Use Randomness to Force Improvisation
Many games use randomness to create a situation in which the player is forced to 
improvise. For example, the random maps generated for games such as Civilization
and SimCity create new and unique sets of challenges each time players start a new 
game. In the collectible trading card game Magic: The Gathering, each player builds 
his own deck by selecting 40 or so cards from his collection. But every time he starts 
a new game, he needs to shuffle them. Players might control the cards in the deck, 
but they must deal with them in a random order. Planning and building your deck 
is one part of the skill that goes into playing Magic: The Gathering. Improvising and 
spotting opportunities as they occur while the game develops is another. 
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Improvisation works very well in a game that offers a random but level playing field 
for all players. If a game generates random events that affect all players equally, the 
decisive factor in dealing with the events comes from the players’ reaction to and 
preparation for these events. Many modern, European-style board games tend to use 
randomness in this way.

FIGURe 6.30
Power Grid, German 
edition. image cour-
tesy of Jason Lander 
under a creative 
commons (cc BY 2.0) 
attribution license.
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randomness Vs. emerGence in modern board Games

modern, european-style board games are often designed to create dynamic systems in 
which players’ skill and strategy are more decisive than luck is. an excellent example is 
the game Power Grid (Figure 6.30). in this game, players buy fuels to produce energy and 
sell the energy to a growing network of cities connected to their power grid. There are 
only two random factors in the game: The initial player order is randomly determined, 
and a shuffled deck of cards determines what power plants are available for players to 
buy. The game has mechanisms in place to counter the effects of this initial randomness: 
With each turn the player order is changed in such a way that is disadvantageous to the 
players in the lead (a form of negative feedback), and for the most part, only the cheaper 
power plants are available, and the most expensive ones are returned to the deck (to 
come back for the end game). none of the decisions players make during a game involves 
rolling dice or other random factors. Buying power plants requires a player to outbid 
her opponents, which is a multiplayer dynamic mechanism but not a random one. many 
other popular and critically acclaimed board games, such as Puerto Rico, Caylus, and 
Agricola, are similar in this respect. each of these games’ mechanics are worth analyzing.

Use Randomness to Counter Dominant Strategies
A dominant strategy is a course of action that is always the best one available to a 
player in all circumstances. (It doesn’t guarantee that the player will win; it’s just his 
best option.) As a designer, it is essential to avoid setting up mechanics that establish  
a dominant strategy. Games with a dominant strategy aren’t any fun to play, because 
the players end up doing the same thing over and over again. If you have a domi-
nant strategy in your game, you need to balance your mechanics better (which we’ll 
discuss in Chapter 8). Sometimes this is too difficult or too time-consuming. In that 
case, adding more randomness to the mechanism can be an easy way out.

For example, consider the following simple two-player, energy-harvesting game. 
Each player starts with a harvester that collects 0.1 energy every turn. Players can 
buy an additional harvester by spending three energy, which increases their harvest-
ing rate. The goal is to collect 30 energy, and whoever collects it first wins. In Figure 
6.31, two players (red and blue) are playing. Red’s strategy is to spend all energy 
to build seven new harvesters before starting to collect energy. Blue’s strategy is to 
build two new harvesters before collecting.

Because this game is completely deterministic, the outcome is always the same: Red 
wins every time. With her strategy, it will take her 119 turns to collect 30 energy, 
while it will take blue, with his strategy, 146 turns to collect 30 energy. In fact, if we 
use a Machinations diagram to determine the time it takes to collect 30 energy for 
all possible options to build between 0 and 11 harvesters, it should become clear 
that building 7 extra harvesters is the dominant strategy: It simply allows the player 
to get to the goal the fastest (Table 6.3).
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Randomness can be used to break this pattern. If the same game were played but 
instead of harvesting 0.1 energy every turn, a harvester would increase the chance 
that energy is harvested by 10%, the results completely change. Figure 6.32 shows  
a sample run of the harvesting game set up in this way. From simulating and run-
ning this game 1,000 times, we determined that now blue has roughly a 15% 
chance to win.

FIGURe 6.31
a simple deterministic 
harvester game. red 
wins all the time.

ST R AT EG y (Numbe r  o f 
Ad d i t iona l  Har ves te rs  Bu i l t )

T uRNS REQuI RED  
T O COMPlE T E GOA l

0 300

1 181

2 146

3 133

4 125

5 121

6 120

7 119

8 120

9 120

10 121

11 121

12 122

TAble 6.3
comparison of the 
different strategies 
in the deterministic 
harvesting Game

NOT E You might  
recognize the pattern  
in the chart from 
the section “Long-
term investments vs. 
short-term gains” in 
chapter 4. it’s the same 
phenomenon.
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Example Mechanics
In this section, we’ll discuss some mechanics commonly found in games across dif-
ferent genres. We’ll use Machinations diagrams to show how these mechanics can 
be modeled, but we’ll also use the diagrams to discuss the mechanisms themselves 
in more detail. You can also find digital versions of all these examples online. 

When reading through the example mechanics, you will notice that we often isolate 
and model different mechanisms individually. This is done partly because models of 
complete games grow complex very quickly. It would be difficult to grasp all these 
mechanics from a single diagram for a game, especially because the printed dia-
grams in the book are static. In many cases, it is simply not necessary to look at all 
the mechanics in a game to understand the most important ones. After all, games 
are often built from several dynamic components. Thoroughly understanding each 
component is the first and most important step toward understanding the dynamic 
behavior of a game as a whole, even when (as in most games of emergence) the 
whole is definitely more than the sum of its parts.

FIGURe 6.32
The random harvester 
game. now blue has a 
15% chance to win.
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Power-Ups and Collectibles in Action Games
The gameplay of action games emerges primarily from interesting physics and good 
player interaction. The levels of many action games are fairly linear: The player 
simply needs to perform a number of tasks, each with a certain chance to fail. His 
objective is to reach the end of a level before running out of lives. Figure 6.33
represents a small level for an action game with three tasks (A, B, and C). Each is 
represented by a skill gate that generates a number between 1 and 100. The player 
is represented by a resource that moves from pool to pool. If the player fails to per-
form a task, there are two options: Either he dies (as is the case with tasks A and C) 
or he is sent back to a previous location in the level (as is the case with task B).

Most action games are more than just a series of tasks, however. They usually have 
an internal economy that revolves around power-ups and collectible items. For 
example, in Super Mario Bros., the player can collect coins to gain extra points and 
lives, while power-ups grant the player special powers, some of which have a limited 
duration. Power-ups and collectibles can be represented in Machinations diagrams 
by resources that are harvested from certain locations. Figure 6.34 shows how this 
might be modeled using different colored resources to indicate different power-ups 
or collectibles. In this diagram, the player must be present at a certain location to 
be able to collect the power-up. This diagram also shows how power-ups and col-
lectibles can be used to offer players different strategic options. In this case, the 
player can progress through the level quickly and fairly easily if she goes from loca-
tion I to II and V immediately. However, she can also opt for the more dangerous 
route through III and IV, in which case she can collect one red and two extra yellow 
resources.

FIGURe 6.33
Level progression in an 
action game
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Power-ups might be needed to progress through a game, and in that case, finding 
the right power-ups is a requirement to complete a level. Other power-ups might 
not be needed but are helpful all the same; in this case, the player must decide how 
much risk she will take to collect one and how much she stands to gain from it. For 
example, in Figure 6.34, the blue power-up is required to perform the final task to 
complete the level, while the red power-up makes that task a little easier.

limited-duration poWer-ups

Power-ups frequently operate for only a limited amount of time. The construction in 
Figure 6.35 shows how you can use delays to create a temporal power-up to aid in a task. 
The power-up respawns to be available again after it has been consumed.

FIGURe 6.35 Limited-duration power-up

FIGURe 6.34
collecting power-ups 
from different locations 
in an action game 
(lives are omitted from 
this diagram)

T IP in Figure 6.34, 
the blue power-up and 
the task that requires it 
constitute an example 
of a lock-and-key 
mechanism. Lock-
and-key mechanisms 
are the most impor-
tant mechanisms that 
games of progression 
use to control how 
a player progresses 
through a level. Lock-
and-key mechanisms 
rarely incorporate 
feedback loops and 
so seldom exhibit 
emergent behav-
ior. We will examine 
lock and key mecha-
nisms in more detail in 
chapter 10, “integrating 
Level design and 
mechanics.”
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Collectibles also offer a player a strategic option. For example, if the player must risk 
lives to collect coins and must collect coins to gain lives, the balance between the 
effort and risk the player takes and the number of coins to be collected is crucial. In 
this case, if a player has collected nearly enough coins to gain an extra life, taking 
more risk becomes a viable strategy. Figure 6.36 represents this mechanism. Note 
that it forms a feedback loop. In this case, the feedback is positive, but the player’s 
skill determines whether the return on the investment is enough to balance the risk 
she takes.

Racing Games and Rubber banding
Racing games can be easily framed in economic terms as a game where the player’s 
objective is to “produce” distance. The first player to collect enough distance wins 
the game. Figure 6.37 illustrates this mechanism. Depending on the implementa-
tion, the production mechanism might be influenced by chance, skill, strategy, the 
quality of the player’s vehicle, or any combination of these factors. The Game of 
Goose is an example of a racing game in which chance exclusively determines the 
outcome of the game. Most arcade racing video games rely heavily on skill to deter-
mine a winner. More representative racing games that include vehicle tuning will 
probably involve some long-term strategy as well.

A simple racing mechanism as represented in Figure 6.37 has a huge disadvantage. If 
skill or strategy is the decisive factor, the outcome of the game will nearly always be 
the same. Consider the mechanisms in Figure 6.38. It shows two players racing, and 
their skill is represented by different chances to produce distance. The chart displays 

FIGURe 6.36
Feedback in collect-
ing coins that gain new 
lives

FIGURe 6.37
racing mechanism
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a typical game session and indicates spreads of possible outcome. Obviously, the 
blue player is going to win nearly all the time.

Many racing games use a technique called rubber banding to counter this effect. 
Rubber banding is a technique of applying negative constructive feedback based on 
the distance between the player and his artificial opponents in order to make sure 
that they stay close. We have seen a construction like this already with LeBlanc’s 
example of negative feedback basketball. In that discussion, we pointed out that 
while negative feedback used like this might keep the players close together, it will 
not really make a poorer player win more often. However, there are adjustments 
that can be made to the rubber-banding mechanism to change that. If the nega-
tive feedback is made stronger and lasts for a time, its effects are changed. Figure 
6.39 represents this type of rubber banding. The blue player has a skill level of 60%, 
while the red player has a skill level of 40%, so blue generates distance more quickly 
than red. The register at the right computes the difference in distance and, depend-
ing on which one is ahead, will signal their Boost source to generate a boost. The 
boost lasts for 20 time steps, and each boost will improve the player’s performance 
by 5%. The chart displays a typical game session that results from this mechanism. 
Note that the chart shows a race in which red and blue take the lead alternately.

FIGURe 6.38
an unequal race

NOT E We have inten-
tionally implemented 
an extreme form of rub-
ber banding to make 
it more visible. real 
games would use more 
subtle boosting.

FIGURe 6.39
rubber banding with 
strong and durable 
negative feedback
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RPG elements
Many games allow players to build up and customize the attributes of their ava-
tars or of a party of characters. Often the mechanics involved are referred to as RPG 
elements of the game. In this economy, skills and other attributes of player charac-
ters are important resources that affect their ability to perform particular tasks. The 
most important structure of the RPG economy is a positive feedback loop: Player 
characters must perform tasks successfully to increase their abilities, which in turn 
increases their chance to perform more tasks successfully.

In classic role-playing games, experience points and character levels act as separate  
resources that structure the economy. Figure 6.40 shows how these mechanics might 
be modeled for a typical fantasy role-playing game. In this case, the player can perform 
three different actions: combat, magic, and stealth. Successfully executing these 
actions will produce experience points. When a player has collected 10 experience 
points, he can level up. The experience points are converted into a higher charac-
ter level and two upgrades that he can use to increase his abilities. (In some games, 
experience points are not consumed, but trigger upgrades at stated thresholds. You 
can do this with a source that produces upgrades and an activator to fire it.) To spice  
up things a little, this diagram also contains a construction that occasionally increases  
the difficulty of the tasks. Using color-coding, the difficulty of each different task pro-
gresses differently. Normally a dungeon master (in the case of a tabletop role-playing 
game) or the game system would make sure players are presented with suitable tasks.

FIGURe 6.40
rPG economy with 
experience points  
and levels
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In Figure 6.40, the positive feedback loop is countered partially by a negative feed-
back loop that is created by increasing the number of experience points required to 
reach the next level every time the player levels up. This is a common design feature 
in the internal economies of many role-playing games. Such a structure strongly 
favors specialization: As players need more and more experience points to level 
up, they will favor the task they are better at, because these tasks will have a bigger 
chance to produce new experience points. This can be countered by applying nega-
tive feedback to the upgrade cost or impact for each ability separately (Figure 6.41), 
either instead of, or in addition to, the increasing costs to level up.

Some RPG economies work differently; they give experience points whether an 
action succeeds or not. For example, in The Elder Scrolls series, performing an action 
often increases the player character’s ability, even if that action is unsuccessful. In 
The Elder Scrolls, negative feedback is applied by requiring the action to be per-
formed more times in order to advance to the next level of ability. This type of 
mechanism is illustrated in Figure 6.42.

FPS economy
At the heart of the economy of most first-person shooters there is a direct relation-
ship between fighting aggressively (thus consuming ammo) and losing health. To 
compensate for this, enemies might drop ammo and health pick-ups when they are 

FIGURe 6.41
alternative ways of 
applying negative 
feedback in an rPG 
economy

FIGURe 6.42
an rPG economy 
without experience 
points controlled by 
the player
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killed. We’ll show how to model this structure in a Machinations diagram in two 
steps (Figure 6.43 and Figure 6.44).

In the first step, ammunition is represented by a pool of resources. When the player 
chooses to engage an enemy, he wastes between two and four ammunition units 
and has a chance to kill an enemy. This is modeled by the skill gate between the 
Engage and Kill drains. In this case, the skill gate is set to generate a random num-
ber between 1 and 100 every time it fires. If the generated value is larger than 50, 
the Kill drain is activated, and one enemy is removed. The register labeled Skill can 
be used to increase or decrease this chance; it can be used to reflect more or less 
skilled players. Once an enemy is killed, a similar construction is used to create a 
50% chance that five more ammunition resources are generated by the Drop Ammo
source, which go into the Ammo pool. To keep things interesting, new enemies are 
spawned occasionally.

Figure 6.44 adds player health to the diagram. In this case, poor performance by 
the player when engaging an enemy (such as when a number below 75 is generated 
by the skill gate) activates a drain on the player’s health. In addition to dropping 
ammunition, there now is also a 20% chance a killed enemy drops a medical kit 
(medkit) that the player can use to restore health.

FIGURe 6.43
ammunition and ene-
mies in an FPs game

FIGURe 6.44
health added to the 
FPs game economy. 
skill gates and ran-
dom gates generate 
numbers between 1 
and 100.
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Analyzing the mechanics in Figure 6.44 reveals that in the basic FPS game economy  
there are two related positive feedback loops. However, the effectiveness of the return 
of each feedback loop depends on the skill of the player. A highly skilled player 
will waste less ammunition, lose less health, and gain ammunition from engaging 
enemies, whereas a poorly skilled player might be better off avoiding enemies. The 
amount of ammunition a player needs to kill an enemy and the chance that killed 
enemies drop new ammunition or medkits obviously is vital for this balance. 

You could add a number of additional feedback loops to make this basic game 
economy more complex. For example, the number of enemies might increase the 
difficulty of killing enemies or increase the chance players will lose health fighting  
them, thus creating positive destructive feedback (a downward spiral). Negative 
constructive feedback could be created by having the player’s ammunition level 
negatively impact the player’s chance of killing an enemy. Players with little ammu-
nition would magically fight a bit better, while those with a lot wouldn’t fight quite 
so well. This would tend to damp down the effect of large fluctuations in ammuni-
tion availability.

RTS Harvesting
In a real-time strategy game, you typically build workers to harvest resources.  
Figure 6.45 represents a simple version of this mechanism with only one resource: 
gold. In this case, gold is a limited resource. Instead of using a source, the available 
gold is represented with a pool named Mine that starts with 100 resources. Note that 
the pool is made automatic so that it starts pushing gold toward the player’s inven-
tory (the pool named Gold). The flow rate is determined by the number of workers 
the player has. Building workers costs two gold units. Note that the converter to 
build workers pulls gold only when there are two gold available: It is in “pull all” 
mode as indicated by the & sign.

FIGURe 6.45
mining for gold in  
an rTs
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Most real-time strategy games have multiple resources to harvest, forcing players 
to assign different tasks to their workers. Figure 6.46 expands upon the previous 
one to include a second resource: timber. In this diagram, players can move work-
ers between two locations by activating the two pools representing those locations. 
Workers in each location contribute to the harvesting of one of the resources. In 
this case, timber is also a limited resource (the Forest pool). The initial harvesting 
rate for timber is slightly higher than the harvesting rate for gold. However, as the 
workers clear the forest, the harvesting rate drops because they have to travel lon-
ger distances (you might recognize this situation from Warcraft). This mechanism 
is modeled by applying a little negative feedback on the harvesting rate of timber 
based on the number of resources left in the forest.

RTS building
In real-time strategy games, all those resources are harvested for a reason: You need 
them to build your base and military units. Figure 6.47 illustrates how resources  
can be used to construct a number of buildings and units. The diagram uses color-
coding, and each unit type has its own color. Soldiers are blue, and archers are 
purple. Building types have their own color too: Barracks are blue, the mill is purple, 
and towers are red. Different colored activators are used to create dependencies 
between the building options: You need a barracks to be able to build units and a 
mill to produce archers and towers. 

FIGURe 6.46
mining gold and har-
vesting timber
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RTS Fighting
An efficient way of modeling mechanics for combat between units is to give every 
unit a chance to destroy one unit of the opposition in each time step. This is best 
implemented with a multiplier. Figure 6.48 illustrates this mechanism. It features 
generic units from two armies (red versus blue), each in a pool; blue has 20 units, 
and red has 30. Every unit has a 50% chance of destroying an enemy unit in each 
time step. This is implemented with a state connection from the pool (the dot-
ted line marked +1m) that controls how many units the blue army will try to drain 
from the red army, and vice versa. As blue has 20 units at the beginning of the run, 
the resource connection between the red pool, and its drain reads 20*50%—that is, 
the 20 blue units each have a 50% chance of killing (draining) a red unit. Similarly, 
the 30 red units each have a 50% chance of killing a blue unit. In the first time step, 
the calculation will run, and some number of each armies units will be drained. The 
state connection will then update the flow rate of the resource connection to reflect 
the new number of units in each pool.

FIGURe 6.47
rTs building 
mechanics

NOT E remember 
that a state connec-
tion always tracks 
changes in the node 
that is its origin. in 
Figure 6.48, the state 
connections reduce the 
multipliers that they 
point to because their 
origin pools are being 
drained.
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 6playinG around With numbers

You should take some time to play around in the machinations Tool with simple construc-
tions like the fighting mechanism of Figure 6.48. it trains your understanding of dynamic 
systems. For example, can you predict whether blue’s chances of winning increase when 
each side’s chance to destroy an enemy each time step is lowered to 10% per unit? Or 
if blue’s chances increase if there are fewer units on each side, even if their relative 
strength is the same?

Figure 6.49 was produced from a run with both sides starting with 20 units and a 10% 
chance of destroying an enemy. studying this chart reveals a widening gap between 
the red and blue units starting roughly halfway through. By now, you should be able to 
attribute this shape to a positive feedback loop kicking in after blue takes a decisive lead 
in the battle. in some runs of this diagram, the feedback takes effect immediately leaving 
the winner with many units; in other runs, the feedback never matters much, and the two 
sides stay close until the very end, leaving the winner with only a few units.

FIGURe 6.49 a chart mapping the battle between 20 red and blue units

FIGURe 6.48
Basic combat in a real-
time strategy game
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We can expand this basic combat construction in two ways. First, we can take into 
account different unit types by using color coding. For example, we might distin-
guish between stronger and weaker offensive units by having each type of unit 
activate a different drain. This is illustrated in Figure 6.50. Blue units have more 
offensive power than green units, because they have a higher chance of destroying 
an enemy. 

orthoGonal unit diFFerentiation

ideally, every type of unit in a real-time strategy game should be unique in some way 
and not just a more powerful (but otherwise identical) version of another unit. This 
design principle is called orthogonal unit differentiation and was first introduced by 
designer harvey smith at the 2003 Game developers’ conference (smith 2003). in Figure 
6.50, the blue units have a greater chance of defeating an enemy than the green units, 
but they are otherwise identical, so they violate this principle. One way to (slightly) 
improve the design would be to lower the price of the blue units but also to make them 
available only after constructing an expensive building. This would differentiate their 
impact on the game: investing in the blue units presents the player with a considerable 
risk and with a potential high reward against the fairly low-risk and low-gain strategy of 
going for green units. 

We can also add the ability to switch between offensive and defensive modes. This 
can be modeled using two different pools for attack and defense (Figure 6.51). By 
moving units from the defense to the attack, you start attacking your enemy. In this 
case, color coding can be used to prevent immobile units (such as towers or bunkers) 
from rushing toward the attack. 

FIGURe 6.50
combat with different 
unit types
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Real-time strategy games, but also simulation games like Civilization, often allow the 
player to spend resources to research technological advances that will give him an 
extra edge in the game. These constructions are usually referred to as technology trees
and often add interesting long-term investments to a game’s economy. More often 
than not, the technology tree involves multiple steps and many possible routes to 
various advancements; these technology trees constitute interesting internal econo-
mies in their own right. 

To model technology trees, you should use resources to represent technological 
advances and have these resources unlock new game options or improve old ones. 
Figure 6.52 illustrates how a technology tree can be used to unlock and improve the 
abilities of a new unit type in a strategy game. The player can start building knights 
only after he researches one level of knight lore. Every level of knight lore also 
increases the effectiveness of the knights, although the research gets more and more 
expensive for every level. In this example, researching knight lore requires a consider-
able investment but rewards the player with stronger units.

FIGURe 6.51
Offensive and defen-
sive modes

FIGURe 6.52
adding research to a 
strategy game
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In some technology trees, players can research each technology only once; however, 
many technologies require the player to have researched one or more technologies  
before. For example, Figure 6.53 represents a technology tree that is not unlike the  
one found in Civilization. Keep in mind that the effect of having a particular tech- 
nology is omitted from this diagram. However, it is easy to imagine that technologies  
such as the alphabet and writing increase the resources available for research. In 
this diagram, the red connections enforce the order in which technologies must 
be researched, while the blue construction keeps track of the number of resources 
developed and adjusts the research prices accordingly. 

Summary
In this chapter, we introduced a few additional features of the Machinations 
Tool and then took a much closer look at two important mechanics design tools: 
feedback loops and randomness. We explained seven different characteristics of 
feedback: type, effect, investment, return, speed, range, and durability. Each of these 
has a distinct effect on the behavior of an internal economy.

In the section “Randomness vs. Emergence,” we showed how you can use random-
ness to create unique situations that force players to improvise. We also explained 
that randomness can help prevent dominant strategies: Because randomness 
changes a game’s state unpredictably, you are less likely to create a game in which 
one strategy is always the best one.

We ended the chapter with an extensive discussion of ways to use Machinations 
diagrams to model economic structures in traditional genres of video games. 

FIGURe 6.53
a Civilization-style 
technology tree
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Machinations can simulate some of the key economies found in action games,  
role-playing games, first-person shooters, and real-time strategy games.

In the next chapter, we’ll discuss the important topic of design patterns, which are 
familiar structures that you can use to create and test mechanics quickly.

Exercises
1. Find a way to include an extra negative feedback loop in Monopoly.

2. Create a game in which all random effects affect all players equally.

3. Design the mechanics for a racing game that involves positive, constructive  
feedback yet remains fair.

4. Create a diagram for the major feedback loops in a published game.

5. Prototype and playtest a game with one feedback loop. Keep adding feedback 
loops of different signatures until you have an enjoyable, well-balanced game that 
exhibits emergent behavior. Prototype and play test every step. How many feedback 
loops are required?

6. In each of the following four diagrams, what will be the production rate of the 
automatic source at the upper left after clicking the interactive node A exactly once?
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7. In each of the following five turn-based diagrams, how many turns will it take  
to accumulate 10 resources in pool A? (In the Machinations Tool, you would also 
need an interactive node labeled End Turn to end a turn, but try to figure it out  
for yourself.)

8. In each of these two color-coded diagrams, what is the minimum number of 
clicks required to win the game?
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Design patterns
In this chapter, we address the concept of design patterns and show how you can 
use the Machinations Tool to build a library of useful patterns. Because there have 
been many efforts to identify design patterns in the past, the first part of the chap-
ter gives some of the history and theory of the subject. Next, we’ll show you how 
Machinations diagrams are effective tools to capture and represent these patterns. 
Finally, we’ll discuss how you can use these patterns to become a better game designer.

Introducing Design Patterns
In earlier chapters, you looked at diagrams representing many different games.  
You might have noticed that some diagrams look remarkably similar. For example, 
we used Figure 7.1 to illustrate a feedback loop in Monopoly, and Figure 7.2 shows 
a single player version of the Harvester game we described in Chapter 6, “Common 
Mechanisms.” If you ignore the Pass Go source and Pay Rent drain in Figure 7.1 and 
rotate the remaining nodes 90 degrees counter-clockwise, you will discover that 
although the details in the labels are different, both feedback loops are the same:  
A source feeds a pool at a particular production rate. Resources from the pool can be  
converted into a new type of resource that increases the production rate of the source.

If you look closely at the other examples in Chapter 6, you might spot similar 
structures a few more times. Risk contains a similar feedback loop, too. This is not a 
coincidence, nor is it likely that the designers of Risk deliberately stole the mechan-
ics of Monopoly. The similarity between the structures simply means that this particular 
pattern in game mechanics works for many games. There are many more patterns in 
game mechanics that are found across many different kinds of games.

147

ChAptEr 7

FIGURe 7.1 Monopoly FIGURe 7.2 The harvester game
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We call recurrent patterns in the structure of game mechanics design patterns. The 
architect Christopher Alexander first introduced the idea of design patterns in his 
book A Pattern Language (1979). That work inspired others to create design patterns 
for software engineering, and they have become a popular tool in that field. Design 
patterns for games, as we describe them here, follow the same lines as those used in 
architecture and software engineering.

A brief History of Design Patterns 
Alexander and his colleagues originally identified design patterns in an attempt to 
capture objective standards of quality in architecture. They documented the patterns  
they found to help architects design good buildings. As Alexander himself put it, 
“There is a central quality which is the root criterion of life and spirit in a man, a 
town, a building, or a wilderness. This quality is objective and precise but it cannot 
be named” (Alexander 1979, p. ix).

Good desiGn

People call things good when they like them. “Good“ is often thought to be a personal 
and subjective value judgment. What one person calls a “good game” might not appeal 
to another. however, many critics of games, films, books, or architecture feel that certain 
products are objectively better than others. They think their evaluations are more than 
just matters of personal taste (and if they don’t, they should reconsider their choice of 
profession). in all fields of art and design, games included, we work with assumption that 
at least some aspects of a game can be evaluated objectively. Our opinions might not be 
universally accepted, but they’re more than a simple matter of personal taste. Learning 
about design patterns for games will help you understand the characteristics that good 
games possess.

Alexander describes an entire library of patterns for architecture, which he calls a 
pattern language. Each pattern represents a solution to a common design problem. 
These solutions are described as generically as possible so that they may be used 
in different circumstances. The patterns are all described in the same format. Each 
pattern also has connections to larger and smaller patterns within the language. 
Smaller patterns help to complete larger patterns. The works of Alexander describe 
more than 100 different patterns across a few different domains within architecture 
(from urban planning to individual buildings).
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This idea was transferred to the domain of software design by Erich Gamma, Richard 
Helm, Ralph Johnson, and John Vlissides (known to the software engineering com-
munity as the “Gang of Four”) in their seminal book Design Patterns: Elements of 
Reusable Object-Oriented Software (1995). Within software engineering, the principles 
of object-oriented programming take the place of Alexander’s unnamed quality. By 
identifying software design patterns, they created a common vocabulary for pro-
grammers to discuss object-oriented software features that they all knew about but 
had no names for. This made it easier for developers to work together but also to 
create better code. The Gang of Four also organized their pattern language into a set 
of interrelated patterns that describe generic solutions to common design problems. 
The original set contained about 20 patterns. Over the years, a number of patterns 
have been added, while a few have been removed. Today the set of core patterns for 
software design remains relatively small.

Design Vocabularies in Games
We are not the first to draw inspiration from Alexander and apply the idea of design 
patterns to game design. Many designers and researchers have noted that game 
designers have no generally accepted design vocabulary that efficiently allows them 
to share and discuss ideas. In a 1999 Gamasutra article “Formal Abstract Design 
Tools, ” designer Doug Church set out to create a framework for a common vocabu-
lary for game design. According to Church, “formal” indicates that the vocabulary 
needs to be precise, and “abstract” indicates the vocabulary must transcend the par-
ticular details of a single game. For Church the vocabulary should function as a set 
of tools, in which different tools are suited for different tasks, and not all tools are 
applicable for a given game.

desiGn patterns Vs. desiGn Vocabularies

The notions of design patterns and design vocabularies are sometimes used inter-
changeably. The approaches are similar but not identical. design patterns and design 
vocabularies try to both capture and objectify essential characteristics of games, but 
design patterns are intended to help people create good games (or program code or 
buildings), while design vocabularies try to remain more neutral and less prescriptive 
(especially when they are used in an academic context). There is something to say for 
both approaches, but in this book we choose the design pattern approach because it is 
of more practical use to designers. We don’t just look at design patterns as interesting 
phenomena found in games; they’re tools for making better games. however, some might 
point out that, because of its more prescriptive nature, a pattern language can be more 
restrictive. We’ll address this issue in the sidebar “Two criticisms of Formal methods” 
later in this chapter.
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As a starting point for his full set of formal abstract design tools, Church describes 
three of them in his article:

n	 Intention. Players should be able to make an implementable plan of their own 
creation in response to the current situation in the game world and their under-
standing of the gameplay options.

n	 Perceivable Consequence. Game worlds need to react clearly to player actions; 
the consequences of a player’s action should be clear.

n	 Story. Games might have a narrative thread, whether designer-driven or player-
driven, that binds events together and drives the player toward completion of  
the game.

Between 1999 and 2002 the Gamasutra website hosted a forum where people could 
discuss and expand the framework. The term design tool was quickly replaced by 
design lexicon indicating that the formal abstract design tools seem to be more suc-
cessful as an analytical tool than a design tool. Bernd Kreimeier reported that “at 
least 25 terms were submitted by almost as many contributors” (2003). As a project 
the formal abstract design tools have been abandoned; however, Church’s article is 
often credited as one of the earliest attempts to deal with the lack of a vocabulary 
for game design, even though his framework never caught on.

desiGn Vocabularies online

You can find a few design vocabularies online. although some of these seem to be aban-
doned, they are still a useful resource for game designers:

• The 400 Project. Initiated by designers Hal Barwood and Noah Falstein, the 400 
Project sets out to find and describe 400 rules of game design that should lead to better 
games. The project website lists 112 rules so far, but the last one was added in 2006. see 
www.theinspiracy.com/400_project.htm.

• The Game Ontology Project. This project attempts to order snippets of game design 
wisdom into one large ontology. it is primarily an analytical tool; it aims at understand-
ing games rather than building them. nevertheless, it contains valuable design lore. see 
www.gameontology.com.

• The Game Innovation Database. This project focuses on tracking innovations in 
game design to their original sources. it is slightly different from typical design vocabu-
laries as it creates a historical perspective on common game design structures. see 
www.gameinnovation.org.

www.theinspiracy.com/400_project.htm
www.gameontology.com
www.gameinnovation.org
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Design Patterns in Games
The attempts to set up a design pattern language, as opposed to a design vocabu-
lary, have been fewer. Bernd Kreimeier suggested a design pattern framework in his 
Gamasutra article “The Case for Game Design Patterns” (2002), but he never actu-
ally built one. In their book Game Design Patterns (2005), Staffan Björk and Jussi 
Holopainen describe hundreds of patterns, and you can find many more patterns on 
the accompanying website. However, Björk and Holopainen choose the following 
definition as their starting point for their pattern language: “Game design patterns 
are semiformal interdependent descriptions of commonly reoccurring parts of the 
design of a game that concern gameplay” (p. 34). In other words, their approach is 
much more like a design vocabulary than it is like a pattern language. They do not 
formulate a clear theoretical vision on what quality in games is or where it might 
come from. Their book is a valuable collection of design knowledge, but it does not 
really tell you how to use that knowledge effectively to build better games.

Any effort to identify design patterns in games should begin with a clear theoretical 
vision on what makes a game objectively good—where its intrinsic quality comes 
from. Based on that vision, it should identify common problems and offer generic 
solutions to those problems, just as Alexander did for architecture. In that way, 
design patterns really become a useful tool for game design, not just game analysis. 
That is how we approach the game design patterns in this book.

Machinations Design Pattern language
In the previous chapters, we discussed quality in games from the perspective of a 
game’s internal economy. Our discussion focused on how certain structural features 
of the game economy (such as feedback loops) create emergent gameplay. It should 
not come as a surprise that the relation between the structure of a game’s internal 
economy and its emergent gameplay is the focal point of the pattern language we 
present in this chapter. In addition, as Machinations diagrams proved to be very 
useful in describing the structure of a game’s internal economy, it makes sense to 
use Machinations diagrams to express these patterns.

Pattern Descriptions
In Appendix B you will find complete descriptions of all the design patterns used in 
this book. You will notice that these descriptions follow a strict format. If you are 
familiar with software design patterns, you might recognize the format; we took it 
from the descriptions used in Design Patterns by the Gang of Four. 
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Each description includes the following items:

n	 Name. Every pattern has a descriptive name. Sometimes a few alternative names 
are listed under Also Known As.

n	 Intent. This is a short statement that describes what the pattern does.

n	 Motivation. The motivation describes the use of the pattern more elaborately 
and suggests a few use-case scenarios.

n	 Applicability. The section describes in what situations the pattern is best used;  
it describes the problems the pattern might solve.

n	 Structure. This is a graphical representation of the pattern using Machinations 
diagrams. 

n	 Participants. This describes and names the elements, mechanisms, and com-
pound structures that are identifiable parts of the pattern. These names are used 
throughout the pattern’s description.

n	 Collaborations. Identifies the most important structural relationships between 
the pattern’s participants.

n	 Consequences. This section describes what you might expect if you apply this 
pattern to your design, including potential trade-offs and possible risks. 

n	 Implementation. For most patterns there are many different ways to imple-
ment them. This section describes a few alternative ways of implementing a pattern, 
including the effects of randomness on it.

n	 Examples. This section lists at least two examples of the pattern in published 
games. 

n	 Related Patterns. Most patterns are related to another one. Some patterns act 
against each other, while others complement each other. These and other relation-
ships are described here.

In the next few sections, we’ll introduce the design patterns that we have collected. 
The patterns described here include a diagram and are organized into categories. 
This is only a brief synopsis, however. You can find full descriptions of each pattern, 
along with examples of games that use it, in Appendix B.

NOT E To make the 
diagrams illustrating 
the patterns as generic 
as possible, we have 
avoided precise num-
bers. many resource 
connections are simply 
labeled with n, and 
many state connections 
are labeled with + or -. 
To run these diagrams 
in the machinations 
Tool, you would have 
to supply additional 
details.
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Category: engines
Engines generate resources that may be required by other mechanics in the game.

sTaTic enGine
A static engine produces a steady flow of resources over time for players to consume 
or to collect while playing the game.

Use a static engine when you want to limit players’ actions without complicating 
the design. A static engine forces players to think how they are going to spend their 
resources without much need for long-term planning.

dYnamic enGine
A source produces an adjustable flow of resources. Players can invest resources to 
improve the flow. Use a dynamic engine when:

n	 You want to introduce a trade-off between long-term investment and short-term 
gains. This pattern gives the player more control over the production rate than a 
static engine does.
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cOnverTer enGine
Two converters set up in a loop create a surplus of resources that can be used else-
where in the game. Use a converter engine when:

n	 You want to create a more complex mechanism to provide the player with more 
resources than a static or dynamic engine provides. (Our example converter engine 
contains two interactive elements while the dynamic engine contains only one.) It 
increases the difficulty of the game because the strength and the required invest-
ment of the feedback loop are more difficult to assess.

n	 You need multiple options and mechanics to tune the profile of the feedback loop 
that drives the engine and thereby the stream of resources that flows into the game.

enGine BUiLdinG
With this pattern, a significant portion of gameplay is dedicated to building up and 
tuning an engine to create a steady flow of resources. Use engine building when:

n	 You want to create a game that has a strong focus on building and construction.

n	 You want to create a game that focuses on long-term strategy and planning.

NOT E remember 
that the profile of a 
feedback loop is the 
collection of its charac-
teristics such as effect, 
investment, speed, 
and so on, that we 
described in Table 6.1.
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Category: Friction 
Friction patterns drain resources out of an economy, reduce its productivity, or both. 
You can use them to represent loss or inefficiency.

sTaTic FricTiOn
A drain automatically consumes resources produced by the player. Use static friction 
when:

n	 You want to create a mechanism that counters production but that can eventu-
ally be overcome by the players. 

n	 You want to exaggerate the long-term benefits from investing in upgrades for a 
dynamic engine.

dYnamic FricTiOn
A drain automatically consumes resources produced by the player; the consump-
tion rate is affected by the state of other elements in the game. Use dynamic friction 
when: 

n	 You want to balance games where resources are produced too fast. 

n	 You want to create a mechanism that counters production and automatically 
scales with players’ progress or power.

n	 You want to reduce the effectiveness of long-term strategies created by a dynamic 
engine in favor of short-term strategies.
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sTOPPinG mechanism
This pattern reduces the effectiveness of a mechanism every time it is activated. Use 
a stopping mechanism when:

n	 You want to prevent players from abusing particular actions. 

n	 You want to counter dominant strategies.

n	 You want to reduce the effectiveness of a positive feedback mechanism.

aTTriTiOn
Players actively steal or destroy resources of other players that they need for other 
actions in the game. Use attrition when:

n	 You want to allow direct and strategic interaction between multiple players.

n	 You want to introduce feedback into a system whose nature is determined by the 
strategic preferences and/or whims of the players.

T IP in formal eco-
nomics, a stopping 
mechanism is also 
known as a law of 
diminishing returns.
For example, beyond 
a certain point, add-
ing fertilizer to a field 
reduces, rather than 
increases, crop yields 
because it is toxic in 
large quantities.
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Category: escalation 
Escalation patterns put pressure on the player to deal with growing challenges. 

escaLaTinG chaLLenGe
Progress toward a goal increases the difficulty of further progression. Use escalating 
challenge when:

n	 You want to create a fast-paced game based on player skill (usually physical skill) 
in which the game gets harder as the player advances; his ability to complete tasks is 
inhibited as he goes.

n	 You want to create emergent mechanics that (partially) replace predesigned level 
progression.

escaLaTinG cOmPLexiTY
Players act against growing complexity, trying to keep the game under control until 
positive feedback grows too strong and the accumulated complexity makes them 
lose. Use escalating complexity when:

n	 You aim for a high-pressure, skill-based game.

n	 You want to create emergent mechanics that (partially) replace predesigned level 
progression.
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arms race
Players can invest resources to improve their offensive and defensive capabili-ties 
against other players. Use arms race when:

n	 You want to create more strategic options for a game that uses the attrition pattern.

n	 You want to lengthen the playing time of your game.

Miscellaneous Patterns
The remaining patterns in our library don’t fall into any other category, so we have 
collected them here.

PLaYinG sTYLe reinFOrcemenT
By applying slow, positive, constructive feedback on player actions, the game gradu-
ally adapts to the player’s preferred playing style. Use playing style reinforcement when:

n	 You want players to make a long-term investment in the game that spans mul-
tiple sessions.

n	 You want to reward players for building, planning ahead, and developing per-
sonal strategies.

n	 You want players to grow into a specific role or strategy.
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mULTiPLe FeedBacK
A single gameplay mechanism feeds into multiple feedback mechanisms, each with 
a different profile. Use multiple feedback when:

n	 You want to increase a game’s difficulty.

n	 You want to reward the player’s ability to read the current game state.

Trade
This pattern allows trade between players to introduce multiplayer dynamics and 
negative, constructive feedback. Use trade when:

n	 You want to introduce multiplayer dynamics to the game.

n	 You want to introduce negative, constructive feedback.

n	 You want to introduce a social mechanic that encourages players to interact with 
one another via commerce (as opposed to combat).
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WOrKer PLacemenT
The player controls a limited resource she must commit to activate or improve dif-
ferent mechanisms in the game. Use worker placement when:

n	 You want to introduce constant micromanagement as a player task.

n	 You want to encourage players to adapt to changing circumstances.

n	 You want to introduce timing as a crucial factor in successful strategies.

n	 You want to create a subtle mechanism for indirect conflict.

sLOW cYcLe
This is a mechanism that cycles through different states slowly, creating periodic 
changes to the game’s mechanics. Use a slow cycle when:

n	 You want to create more variation by introducing periodic phases to the game.

n	 You want to counteract the dominance of a particular strategy.

n	 You want to force players to periodically adapt strategies to shifting 
circumstances.

n	 You want to require a longer period of learning before achieving mastery of the 
game. (Players experience slow cycles less frequently, so have fewer opportunities to 
learn from them.)
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n	 You want to introduce subtle, indirect strategic interaction by allowing players to 
influence the cycle’s period or amplitude.

Combining Design Patterns
Games rarely implement just one design pattern. Most of the time, you’ll find that a 
game combines a few of these patterns in a clever construction. For example, Tetris 
combines escalating complexity (the game gets more difficult as the tetrominoes 
build up and more and more holes—unfilled spaces—appear at the bottom) and 
escalating challenge (the tetrominoes start falling more quickly as the player clears 
more lines). As you can tell from their descriptions, many patterns in the library 
complement each other, but you’ll find that even more unlikely combinations of 
patterns can have some interesting consequences. 

Certain patterns combine so well that they drive entire game genres. For example, 
the core of most real-time strategy games is formed by a combination of a dynamic 
engine with attrition. The players build up their base with a dynamic engine for 
production to fuel a war of attrition. Larger real-time strategy games complement 
this combination with an arms race pattern or (less commonly) an engine-building  
pattern to provide more strategic options and create longer gameplay. Most role-play-
ing games combine playing-style-reinforcement (character building) with escalating 
challenge (harder challenges as the player progresses). 

The descriptions of the patterns in Appendix B include many suggestions on how 
patterns might be combined, but we encourage you to explore and experiment with 
different combinations yourself. 

elaboration and Nesting Patterns
Reading through the pattern descriptions in this chapter and in Appendix B, you 
might have noticed that some of the patterns seem similar. For example, a dynamic 
engine allows the player to make changes to the production rate of a resource, while 
the engine building pattern does something very similar, except that it doesn’t 
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dictate a particular implementation. You can think of the dynamic engine pattern 
as a special instance of the engine building pattern. If you include a dynamic engine 
in your game, you have implicitly included some form of engine building. Attrition 
and dynamic friction exhibit the same relationship: Attrition is a more special-
ized case of dynamic friction. Creating attrition is simply a special case of applying 
dynamic friction symmetrically. 

From the perspective of design pattern theory, this type of relationship between 
patterns is called elaboration. One pattern (for example, attrition) is a more elabo-
rate implementation of another pattern (for example, dynamic friction). Within 
the engine patterns, the worker placement pattern elaborates the engine building 
pattern, while the engine building elaborates the dynamic engine, and the dynamic 
engine elaborates the static engine. 

Elaboration can be an important tool to design games. For example, if a game is too 
simple, replacing one pattern in the game with a pattern that elaborates the origi-
nal pattern will make the game more complex. At the same time, when a game is 
too complex, replacing a complex pattern with a simpler pattern that the original 
elaborates will make the simpler. Ultimately, all engine patterns elaborate an ordi-
nary source node, and all friction patterns elaborate an ordinary drain node. In your 
game, you should be able to replace any source with an engine, and vice versa. The 
pattern descriptions in Appendix B list what patterns elaborate other patterns and 
by which patterns it is elaborated under the related patterns section.

To illustrate how elaboration might be used as a design tool, consider the Harvester 
game. As was mentioned in the beginning of this chapter, it implements a dynamic 
engine pattern. There are a few possible elaborations. For example, we might 
elaborate the entire pattern to the engine building pattern or even to the worker 
placement pattern (Figure 7.3). 

Another option would be to elaborate elements within the dynamic engine. As 
we already mentioned, we could elaborate any source to an engine pattern. As the 
Harvester game contains a source, we could replace that source with a converter 
engine pattern (Figure 7.4). In turn, because the converter elements themselves 
actually consist of a combination of a drain triggering a source, we could replace 
any of them with an engine or a friction pattern.
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FIGURe 7.3
elaborations of the 
harvester game

FIGURe 7.4
another elaboration of 
the harvester game
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reVersinG elaboration: simpliFication

You can use elaboration to make games more complex, but you can also do the reverse. 
By replacing elaborate patterns with simpler ones, you can remove complexity from a 
design. You can also use simplification to create diagrams that are more abstract than 
the game that they describe yet that still retain some of the game’s dynamic behavior. We 
used this simplification technique for several diagrams in this book, notably the Pac-Man
examples in chapter 5 and the Risk examples in chapter 6. For example, in the diagrams 
for Risk, we modeled the opposition from other players as dynamic friction (see Figure 
6.27). a multiplayer diagram for the same game would use the attrition pattern for the 
same mechanism. By replacing attrition with dynamic friction, we removed the other 
players from the diagram entirely and focused more on the internal economy from the 
perspective of a single player.

Elaboration does not apply only to design patterns; it applies to almost any element 
in a Machinations diagram. For example, Figure 7.5 displays a number of ways to 
elaborate a converter. Any game mechanism can be an elaboration of a converter as 
long as it displays more or less the same functionality: consume one resource to pro-
duce another. The elaborated converters cannot be called design patterns, because 
they don’t present a generic solution to a common problem. However, building up a 
repertoire of such structures (while being aware of what they originally came from) 
will allow you to experiment with game mechanics with great ease. 

FIGURe 7.5
different elaborations 
for a converter element
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elaboration and desiGn Focus

elaboration and its reverse, simplification, can be great tools to match the mechanics of 
your game to its design focus: your intended gameplay. if your game is primarily about 
combat, you might create elaborate mechanisms for that part of the game and use sim-
pler mechanisms for parts of the game that the player will spend less time on (and care 
less about). if you notice that the mechanisms controlling secondary gameplay (construc-
tion or inventory management, for example) are too elaborate, try replacing them with 
simpler patterns or even single elements. sometimes it is better to replace a complex 
production mechanism with a simple source that has a random flow rate. By choosing to 
elaborate the mechanisms that generate the most important gameplay and simplify the 
other aspects, you can focus your design on what matters most to your player.

extending the Pattern language
The patterns in this book are the result of many studies of existing games and also 
of using Machination diagrams to help design games. However, we do not mean to 
suggest that the pattern language as presented here is complete. Although the pat-
terns we have described already capture many important aspects of a wide variety of 
games, we expect that in the near future we will add more patterns to this collec-
tion. In fact, we encourage you to keep an eye out for more interesting patterns that 
emerge from your own designs or from your analysis of other people’s games. 

When encountering a new pattern, it is important to try to describe it in generic 
terms. You might have found a new pattern in a science-fiction game about inter-
galactic trade, but that doesn’t mean the pattern and its participants should take 
their names from that game. When describing new patterns, stick to the description 
format and general terms described in the earlier section “Pattern Descriptions.” 
Identify and name the most important participants; try to think of a number of dif-
ferent ways to implement the pattern, but most importantly identify the common 
design problems your pattern solves. 
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tWo criticisms oF Formal methods

The machinations diagrams and the pattern language formalize the practice of game de-
sign to a certain extent; they are tools that we hope will enhance and complement your 
existing skills. however, not everyone in the game industry sees value in such methods. 
Game designer raph Koster gave a lecture at the Game developers’ conference called 
“a Grammar of Gameplay: Game atoms—can Games Be diagrammed?” (2005), in which 
he discussed game mechanics at some length and proposed a method for diagramming 
them. Later he noted that the audience reaction was quite mixed (sheffield 2007). From 
our own discussions on game design methodology with various people in the game 
industry, we have noticed a similar split. some designers dislike the premise of design 
methodology and argue that they are academic toys with little relevance for real, applied 
game design. Others recognize the value of these tools and are happy to experiment with 
them to improve their designs.

another common argument against game design tools and methodology is that they can 
never capture the creative essence that is the heart of successful game design. according 
to this view, no formal method can replace the creative genius of the individual de-
signer (Guttenberg 2006). supporters of this argument fear that the tools will ultimately 
limit designers because they tend to view game design only through the lens of formal 
methods.

design tools can be Worth the investment
We cannot deny that the current vocabularies and frameworks for formal methods have a 
poor track record within the game industry. There are a number of them in existence, but 
many were designed by academics with little hands-on game design experience. Often 
it takes a considerable investment to learn their tools, while the return value of using 
them is not particularly high. This is especially true of tools designed primarily to analyze 
games. Formal game analysis is done more often in universities than in industry.

The criticism is valid, but it does not mean that there is no point in trying to create game 
design methodologies. it simply suggests that we should adopt criteria for evaluating them: 
They should help designers to devise, understand, and modify their designs, not just to  
analyze other people’s games. We hope that by now, you see that the design patterns and 
the machinations language are not simply tools for analysis; they can actually help you 
improve your mechanics and offer the opportunity of experimenting with your designs 
at an early stage during development. chapter 9, “Building economies,” features an ex-
tensive case study. in that chapter, we’ll show you how to use these tools to design game 
mechanics in a way that goes beyond the typical brainstorming techniques. (We do en-
courage you to use the brainstorming opportunities that design patterns offer, however.)

continues on next page
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tWo criticisms oF Formal methods continued

any design tool requires some investment to master, but we feel that learning 
machinations will pay back this investment. Your design will be better because the tools 
offer you an efficient way to test your mechanics quickly. 

design tools support creativity 
The second argument, that no formal design method can replace the instinctive creative 
genius of the individual designer, is more problematic. People who subscribe to this 
opinion dismiss the whole idea of design methodology. however, this opinion is often 
informed by a rather naive conception of art. art is, and always has been, the combina-
tion of creative talent, practiced technique, and hard work—a lot of hard work. There is 
no point in denying that one artist has more talent than another, but pure talent rarely 
makes up for the other two aspects entirely. especially within an industry where much 
money rides on the success of each project, investors simply cannot afford to gamble on 
creative talent to deliver all the time. 

The image of the artist as a creative genius extemporaneously devising brilliant works 
with raw talent is a romantic vision that rarely fits reality. To create art, artists must learn 
the techniques of the trade and work hard. This has always been the case for all forms of 
art, and there is no reason to assume that games are any different. The artist’s tools and 
techniques are many. They range from the practical to the theoretical. Painters learn how 
to use a brush with different types of paint and learn about the mathematical principles 
of perspective and the psychological principles of cognition. The invention of geomet-
ric perspective—a seemingly scientific rather than aesthetic innovation—revolutionized 
renaissance painting. The development of abstract art throughout the nineteenth and 
early twentieth century has been a gradual and deliberate intellectual process. none of 
these changes would have happened if painters treated intuition and individual skill as 
their only source of progress.

We feel that skeptics of design methodologies are missing the point. Formal design 
methods are created to support the creative genius, not to replace it. no matter how 
good a method or tool is, it can never replace the vision of the designer, nor can it 
replace the hard work involved in designing a game. at best it can ease the burden and 
refine a designer’s techniques. The best methods do not restrict a designer’s vision. 
rather, they enhance it, enabling the designer to work faster and create better results. 
machinations diagrams also facilitate teamwork and collaboration. instead of arguing 
about how their proposed mechanics will behave once the code is written, a design team 
can diagram and simulate them before a line of code is written.
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leveraging Patterns for Design
A pattern language is a tool designed to help you. It does not enforce a particular 
way to design games. Patterns are guidelines you can use to explore your designs, 
not rules instructing you what you must do to make a good game. Nevertheless, we 
advise you to stick to the patterns initially. Implementing these patterns is a great 
way to build your design experience and learn by copying time-tested structures. 
Once you have some experience with identifying and applying these patterns, it 
makes perfect sense to start to break away from them. Moving into new, uncharted 
territory is exciting and important, but it is best done after you’ve gained some 
experience.

Improving Your Designs
The most important thing you can do with design patterns is to use them to solve 
problems in your design. For example, you might notice that your game produces 
arbitrary outcomes because a strong positive, constructive feedback loop amplifies a 
small random difference in luck early in the game. Looking at the patterns, a num-
ber of solutions suggest themselves. If the game has multiple resources, you might 
introduce more negative feedback by using the trade pattern. Or you could apply 
dynamic friction to counter the positive feedback.

To use design patterns in this way, it pays to study the library. Knowing the patterns 
and their different implementations will enhance your understanding of common 
problems in game design and provide you with a repertoire of potential solutions. 
Design patterns represent general design lore in a concentrated form. After all, most  
of these patterns have evolved in games over a long period. Design patterns allow you 
to build on that experience without going through a long learning period yourself. 

brainstorming with Design Patterns
Pattern languages make good brainstorming tools, and they allow all sorts of cre-
ative exercises. One simple technique is to choose two or three patterns at random 
from the collection and try to design a game economy around them. There are 
several ways to approach this exercise. You could choose a pattern at random, 
implement it in a digital Machinations diagram, and then choose a new pattern 
and add it to your diagram. You probably want to repeat this until you have imple-
mented three or four patterns. You might also try to create paper prototypes for 
every step. Don’t worry if you randomly select the same pattern again. Simply find 
another resource or part of the diagram to apply it to. Alternatively, you can select 
a number of patterns beforehand and design a game economy that implements all 
patterns from the start. 
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You can do a similar thing for games you are currently developing. The patterns sug-
gest many generic terms for resources in your game based on their function in the 
economy. Identifying what resource in your game functions as the main “energy” 
that fuels the player’s core actions could help bring your game’s most important 
economic structures into focus. Randomly pick a pattern and use it as a lens on the 
game, asking yourself questions like, Is the pattern present in the current design, 
and if so, does it work the way you want it to? If not, would adding it help counter 
problems in the design?

You could also use the patterns as a lens to analyze and change existing games. For 
example, what mechanisms act as a stopping mechanism in StarCraft? What would 
happen if you changed the basic economy of that same game to include a converter 
engine instead of a dynamic engine? What patterns would make a good addition? 

What about player-centric desiGn?

in Fundamentals of Game Design, ernest adams proposed an approach to designing 
games called player-centric design. The approach calls for the designer to imagine a 
representative player and to judge all design decisions against his or her expectations 
and hopes about the game. at first, this may seem to conflict with all our talk of feedback 
loops and formal methods. But make no mistake: Player-centric design is still at the 
heart of designing game mechanics, even at their most abstract.

When you create a game with highly complex interlocking systems and very little random- 
ness, one like the board game Power Grid mentioned in chapter 6, you must understand 
that your game will appeal to a certain type of player and not to others. Power Grid  
appeals to what might be called mathematical strategists—people who enjoy deciphering 
such systems and learning to optimize them. a shorter game in which randomness plays 
a larger part will appeal more to casual players and young players. People choose a 
game for the kind of gameplay that it offers, and mechanics create gameplay.

in other words, even though you can design a game around a mechanic, you must never 
lose sight of the question, “Who likes this kind of game?” The player is still the center of 
the designer’s world.

Summary
This chapter introduced the concept of design patterns: recurring structures that 
appear in architecture, software, games, and other fields. After an overview of this 
idea’s history, we identified 16 common patterns from game mechanics, in 3 catego-
ries (engines, friction, and escalation), plus several more patterns that don’t neatly 
fit into a category. We ended the chapter by discussing some ways that you can use 
the patterns in your own game design practice by combining them and brainstorm-
ing about them. The patterns can also be used to analyze games that you already 
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have in development. Another of their benefits is that they give you a common 
vocabulary to discuss the characteristics of your game’s mechanics with other mem-
bers of your team.

In the next chapter, we will introduce an even more powerful feature of 
Machinations: the scripted artificial player. We’ll also conduct an in-depth analy-
sis of two games, Monopoly and SimWar, showing how Machinations can be used to 
model, simulate, and balance them.

Exercises
1. What design patterns did you use in recent game projects? What design patterns 
might you have used that you didn’t? Could you have improved your game with 
one of them? If so, how?

2. Think of a game that you know well. It can belong to any genre except pure 
adventure games (which have no internal economy). What patterns can you find in 
it? Try diagramming them in the Machinations Tool.

3. Choose two design patterns at random (we sometimes write the names of the 
patterns on blank cards for this and then shuffle them and draw from the deck). 
Can you identify a game in which they both appear? Alternatively, try to think of a 
game concept that would use the two that you got. Create a Machinations diagram 
for the game with appropriately labeled sources, drains, pools, and other elements.
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simulating and 
Balancing Games
With simple games, you can compute the odds that a given player will win without  
ever actually playing the game. This is commonly true of gambling games that have 
trivial mechanics, such as blackjack or roulette. With more complex games, especially 
those that include random factors, you have to play the game many times to find 
out whether it is fairly balanced. In several of the examples in the earlier chapters, 
we stated that the chance that a particular player might win or lose a game could 
be simulated in a digital Machinations diagram. We arrived at the number we gave 
based on data from thousands of simulated play tests. As you might guess, we didn’t 
run through all those play tests manually. The Machinations Tool allows you to 
define artificial players and run multiple sessions automatically to collect this type 
of data. These techniques are especially helpful when you are balancing your game. 
In this chapter, you will learn all about them.

Simulated Play Tests
As you learned in Chapter 5, “Machinations,” interactive nodes in Machinations 
diagrams don’t operate until the user clicks them. (Interactive nodes are drawn with a  
double line instead of a single one.) To simulate large numbers of play tests without 
human intervention, the Machinations Tool offers a special feature that can act as an  
artificial player. In a diagram, an artificial player is represented by a small square with  
the letters AP inside (Figure 8.1). It should not be connected to anything. An artificial 
player allows you to define a simple script to control other nodes in the diagram. This  
way, you can automate the actions of a player; an artificial player can “virtually click,” 
or activate, a node for you. (Artificial players are not limited to controlling interactive 
nodes, however. An artificial player can activate any named node.) While running a 
diagram with an artificial player, you can simply sit back and watch the action. 

T IP The online 
appendix c contains  
a detailed tutorial  
that shows you how to 
create diagrams in the 
machinations Tool.

FIGURe 8.1
a sample diagram with 
an artificial player
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Artificial Players in Machinations
To add an artificial player to a diagram, select it from the Machinations menu and 
place it somewhere on the diagram. Because it doesn’t need to be connected to any-
thing, you can put it well out of the way.

Artificial players have a number of settings that allow you to control their behavior. 
As with all Machinations nodes, you can set their color, line thickness, and label. An 
artificial player has an activation mode like any other Machinations node (see the 
section “Activation Modes” in Chapter 5 for more information). Most importantly, 
an artificial player has a script that allows you to specify what other nodes the arti-
ficial player will activate when it fires. Executing this script is an artificial player’s 
primary function.

When you select an artificial player node in your Machinations diagram, you will 
see a script box in its element panel along with the artificial player’s other attributes. 
This is where you enter its script.

A script consists of lines of instructions that tell the artificial player what to do. 
They may take two forms: direct commands and if statements. A direct command 
simply consists of an explicit order. An if statement begins with the word if followed 
by a condition (explained in a moment) and then a command. When an artificial 
player fires, it evaluates each line of its script in succession, starting at the top. If a 
line is a direct command, it simply executes that command. If a line is an if state-
ment, the artificial player checks whether the given condition is true, and if so, it 
executes the command following the if statement. If the condition is not true, the 
artificial player proceeds to the next line in the script. Once any command is executed, the 
execution of the script stops; it does not evaluate the next line. The next time the arti-
ficial player fires, the script is evaluated again starting from the top.

direcT cOmmands
The most basic commands activate one or more nodes in the diagram as specified by 
their parameters. Once a command has executed, the script stops. All the basic com-
mands are variations on the word fire. Node names are case sensitive.

fire(node) This command looks for a node whose label matches the parameter and 
fires it. For example, the command fire(Produce) will activate the source labeled 
Produce in Figure 8.1. The fire() command can be called without parameters. If 
you simply type fire() and don’t name a node within the parentheses, the script 
terminates and no node is fired. The same happens if the parameter of the fire()
command doesn’t match any node in the diagram.

NOT E machinations 
artificial-player scripts 
are not as powerful or 
complex as the script-
ing languages used in 
level design tools. You 
don’t need to be a pro-
grammer to create an 
artificial player script.

T IP Because a script 
stops the moment it 
executes a command, 
you cannot have two 
direct commands in a 
row in a script. The sec-
ond one will never be 
executed. But you can 
have a sequence of if 
statements. The script 
will evaluate them in 
order until it hits one 
whose condition is true. 
it will then execute that 
command and stop.
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fireAll(node,node…) The fireAll() command does exactly the same thing as the 
fire() command, but it accepts more than one parameter. When executed, it fires all 
the named nodes simultaneously.

fireSequence(node,node…) The fireSequence() command is rather specialized: It acti-
vates the nodes listed in its parameters one at a time in order, changing to the next 
node each time the command is executed. The first time the script executes fireSe-
quence(), it will activate the first node in the parameter list. The second time the 
script executes fireSequence(), it will activate the second node in the list, and so on. 
It automatically keeps track of which one is next. If the command is executed more 
times than it has parameters, it will simply start again from the first parameter. For 
example, the command fireSequence(Produce, Produce, Upgrade, Produce, Consume)
will cycle through activating the source twice, the converter, the source again, and 
then the drain in Figure 8.1.

fireRandom(node,node…) This command takes as parameters the names of multiple 
nodes, but it selects one of them at random and fires it. To increase the probability 
of it firing a given node, you can enter that node’s name more than once. For exam-
ple, in Figure 8.1, the command fireRandom(Produce, Produce, Consume, Upgrade) has 
a 50% chance of activating the source, a 25% chance of firing the drain, and a 25% 
chance of firing the converter.

iF sTaTemenTs
The script of an artificial player also lets you specify conditional commands using if
statements. if statements consist of the word if, a condition specified in parenthe-
ses, and a command to execute if the condition is true.

if(condition)command The condition in an if statement can refer to pools and reg-
isters to check the state of the diagram. For example, the script line if(Resources>3)
fire(Consume) activates the drain in Figure 8.1 when there are more than three 
resources in the pool labeled Resources.

There is no need for an else statement in the scripts for artificial players because the 
script executes until it finds either an if statement that is true or one of the direct 
commands. For example, the following script will fill the pool marked Resources in 
Figure 8.1 with a few resources before randomly choosing between a Consume or 
Upgrade action:

if(Resources>4) fireRandom(Consume, Upgrade)

fire(Produce)
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An if statement allows you to perform calculations and string multiple conditions 
together with logical operators. It works the way you would expect if you are already 
familiar with if statements in programming languages like Java or C. Table 8.1 lists 
the possible operators supported by the conditions in an if statement.

OPER AT OR E x Pl A N AT ION E x A MPlE

== equality if(resources == 1) fire(consume) 
Fire consume node when the number of resources equals one.

!= nonequality if(Upgrades != 0) fire(Upgrade) 
Fire Upgrade node when the number of resources is not zero.

<=, <, >=, > relational if(resources <= 3) fire(Produce) 
Fire Produce node as long as the number of resources is 
equal to or smaller than three.

+, - additive if(Upgrades + 2 < resources - 1) fire(Produce) 
Fire Produce node when the number of upgrades plus two is 
smaller than the number of resources minus one.

*, /, % multiplicative if(Upgrades * 2 > resources / 3) fire(Upgrade) 
Fire Upgrade node when the number of upgrades times two 
is larger than the number of upgrades divided by three. 
The % sign is used for modulo: if (resources % 4 == 2) fire 
(Upgrade) Fire Upgrade node if the number of resources 
equals 2, 6, 10, and so on.

&& Logical and if(resources > 4 && Upgrades < 2) fire(Upgrade) 
Fire Upgrade node when there are more than four resources 
and fewer than two upgrades.

|| Logical or if (resources > 6 || Upgrades > 2) fire(consume) 
Fire consume node when there are more than six resources 
or more than two upgrades.

exTra cOmmands
Apart from the various kinds of fire commands, there are a few extra commands you 
can use in a script for an artificial player:

stopDiagram(message) 
Stops the execution of the diagram immediately, very much like an end condition 
does. You can put a string of text in the parameter. If you have more than one artifi-
cial player, you might want to use a different message in the script of each player to 
let you know which player stopped the diagram. When executing multiple runs (see 
“Collecting Data from Multiple Runs”), the tool will keep track of how many times 
each message appeared and let you know in a dialog box as the runs take place. This 
will enable you to collect statistics on what causes a diagram to stop. 

TAble 8.1 
Possible Operators in 
script conditions
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n	 endTurn() Ends the current turn in a turn-based diagram.

n	 activate(parameter) Deactivates the current artificial player and activates the 
one identified by the parameter instead.

n	 deactivate() Deactivates the artificial player.

Artificial players can also be used in a turn-based diagram (see the section “Time 
Modes” in Chapter 5 for a discussion of turn-based diagrams). However, in that  
case, their behavior changes a little. Most importantly, in a turn-based diagram, the 
artificial player has a number of actions that indicate how many times it will fire 
during a turn. When it has multiple actions per turn, these actions are executed at 
one-second intervals.

special Values in conditions

if statements in a script allow you to use the following special values:

•   random generates a random real number between 0 and 1. it is useful to create an 
action that has a particular chance of occurring. For example, in the script if(random 
< 0.25) fire(A), action a will have a 25% chance of firing. The random number gener-
ated can be used like any other value in a condition. For example, the script if(random 
* 100 > Resources) fire(Produce) means that the chance of firing the Produce node 
is inversely proportional to the number of resources in the resources pool. The more 
resources there are, the smaller the chance that the condition will succeed; if there are 
100 resources, it will never succeed, and the artificial player will never fire the Produce 
node. This is useful for creating an artificial player that fires the Produce node only 
when it detects that it needs more resources.

•   pregen0 … pregen9 are ten special values that hold random values between 0 and 1. 
however, in contrast to the random value, these values are filled only once when the 
diagram starts and do not change while it plays. 

•   actions indicates the number of times the artificial player has fired.

•   steps indicates the number of time steps that have been executed by the diagram.

•   actionsOfCommand indicates the number of times the command after the if statement 
has been executed.

•   actionsPerStep indicates the number of times the artificial player has fired during the 
current time step.

NOT E When a 
diagram uses color-
coding, the artificial 
players may be color-
coded as well. in that 
case, an artificial player 
can fire only nodes  
that are the same color 
as itself.
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Collecting Data from Multiple Runs
Artificial players allow you to run diagrams 
and test games automatically. To make the 
best use of this option, the Machinations 
Tool allows you to quick run the diagram 
(Figure 8.2). You do this by switching to the 
Run tab in the tool and clicking the Quick 
Run button. While quick running, the dia-
gram executes very quickly but doesn’t 
allow any interaction. If you are using quick 
run, you must make sure that the diagram 
has an end condition and can actually reach 
that end condition. If the diagram keeps on 
running without reaching an end condition, 
you can click the Quick Run button again 
(which is now labeled Stop) to stop it manu-
ally. Click the same button once more to  
reset the diagram back to its starting condition. 

You also have the option to run a diagram multiple times. To do this, go to the Run 
tab in the Machinations Tool and click the Multiple Runs button. By default, the 
number of times that a diagram runs is set to 100, but you can easily change this 
number in the Run tab. To prevent the tool from running endlessly, if a running 
diagram in a multiple run batch doesn’t reach an end condition after 10,000 time 
steps, it will stop automatically. When running multiple times, the diagram will 
keep track of the number of times that each of its end conditions were reached. If 
you have a game with two players that each have their own win condition (which 
would be an end condition also), this makes it easy to determine who wins more 
often. This feature was used to create the statistical data given in some of the exam-
ples in this book. When you run a diagram multiple times, the diagram also keeps 
track of the elapsed time of each run and lets you know the overall average, which 
can be useful when comparing different artificial player scripts to see which script 
drives the economy toward a particular state (normally victory!) the fastest.

Finally, if your diagram contains a chart, the data from each run is stored in the 
chart (Figure 8.3). By default, charts display the data from the last 25 runs, but they 
store more. You can actually browse through all the data captured by the chart by 
clicking the << and >> symbols below the chart. The data from the current run will 
be bright while the other runs are dim. (Figure 8.3 is currently showing the results 
from the 97th run.) To clear a chart’s data between simulations, click the word clear
on the chart. You can also save the collected data as a comma-separated values data 
file (*.csv) for further analysis in a spreadsheet or statistics program. To do this, click 
the word export below the chart and choose a location to save the file.

FIGURe 8.2 The run panel of the 
machinations Tool
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Designing Artificial Player Strategies
Artificial players cannot replace real players, and the scripting options will not  
allow you to create clever artificial intelligence (AI). The purpose of artificial players 
is to test relatively simple strategies to see how the mechanics operate, not to build 
an adaptive AI player. To get the most out of artificial players and automated play 
tests, it is best to design artificial players that represent caricatures: Design them to 
consistently follow a particular strategy, no matter the consequences. For example, 
if you want to find out what mix of unit types is best for a real-time strategy game, 
design a few different artificial players to build the various mixes that you want to 
try and have them play each other. Artificial players can be passive or automatic  
just like any other node. This allows you to switch between different artificial play-
ers quickly and thus try different artificial players simultaneously. While you are 
running a diagram, you can click an artificial player to switch it between automatic 
and passive modes.

It often takes several tries to get the strategy for an artificial player right. This is to 
be expected, especially if you are creating artificial players for your own designs. 
Designing artificial players is a good way to explore and test your design. Ideally, 
you should be able to find many valid strategies for your artificial players to follow. 
If you can script an artificial player that consistently beats other artificial players (or 
yourself), you probably have found a dominant strategy, and you need to change 
the mechanics to reduce the effectiveness of that strategy.

remOvinG aLL randOmness
As we discussed in the section “Randomness vs. Emergence” in Chapter 6, “Common 
Mechanisms,” random factors can obscure the operation of a pattern that might 
create a dominant strategy. When testing for balance, it is important to identify 
dominant strategies, and this will be easier to do if you remove the random factors 
from the mechanics.

FIGURe 8.3
a machinations chart 
showing the result of 
100 runs
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Randomness that is expressed as a percentage in a Machinations diagram can be eas-
ily replaced by substituting a fraction representing the average value. If you have a 
source that randomly produces resources with a probability of 20%, you can replace 
this number with a fixed production rate of 0.2. This will cause the source to produce 
a resource at the rate of two every ten time steps. Randomness that is expressed as 
a range generated by rolling multiple dice (such as 3D6) is more difficult to replace 
because the probability distribution is not uniform. We suggest using the average. 
The formula for the average with any number of dice that all have the same number 
of sides is as follows:

Average die roll = (Number of sides on a die +1) × Number of dice ÷ 2

In the case of 3D6, it is (6+1) × 3 ÷ 2, or 10.5.

Alternatively, you might want to make sure that the script of your artificial players 
does not involve any randomness. In this case, replace all fireRandom() commands 
with fireSequential() commands and find a different value for all conditions that 
involve random. For example, if(random < 0.3) fireRandom(A, B, B, C) could be rewrit-
ten as if(steps % 10 < 3) fireSequential(A, B, B, C).

If you remove all the randomness in labels on connectors and all the randomness 
appearing in artificial player scripts, you will always get the same result from running 
the diagram. This might be a good way to find out whether a certain strategy is actu-
ally superior to another strategy.

LinKinG arTiFiciaL PLaYers
When working with artificial players, your scripts can get long and complex. One 
way to reduce the complexity of the scripts is to split a script over multiple artificial 
players. This can be done by having one artificial player firing another, interactive 
artificial player. For example, you could create one artificial player called builder that 
you design to identify and fire the best building action, while you create another 
called attacker to identify and fire the best offensive actions. In that case, you could 
randomly select between the two by creating a third artificial player with the script 
fireRandom(builder, attacker).

A word of caution, however: Artificial players allow you more control over the 
behavior of a Machinations diagram, but this can cause you to mislead yourself 
about how well-balanced or manageable your economy is. If you have to spend a 
lot of time trying to make artificial players that successfully control your economy, 
that’s usually an indication that your economy has a problem. Artificial players 
aren’t supposed to be smart enough to beat a game that is unfair to the player or has 
other weaknesses. Their purpose is to reveal issues, not to obscure them. Tune your 
mechanics, not your artificial players.
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Playing with Monopoly
For our first detailed example of an automated Machinations diagram, we will 
explore the balance of the game Monopoly. We’ll look at how this balance is affected 
by the different mechanisms in the game and how design patterns might be applied 
to improve the game.

Figure 8.4 represents a model of Monopoly. It is slightly different from the models 
we have used for Monopoly so far. The important differences are as follows:

n	 It represents a two-player game. Earlier in the book we used a source and a drain 
to represent the player receiving and paying rent, but this has been replaced by two 
gates that transfer money between the two players. In this case, every property that 
a player has generates a 4% chance that the other player has to pay one money unit 
every time step.

n	 The number of available properties is limited. In this example, there are only 20  
properties in the game initially stored in the Available pool. Once they are gone, the 
players cannot buy more property.

We also defined two artificial players that control each player. Both artificial players 
have a simple, single-line script. This script reads as follows:

if((random * 10 < 1) && (Money > 4 + steps * 0.04)) fire(Buy)

The effect is that each artificial player has a 10% chance that it will buy a prop-
erty in each time step. It will buy property only if it has enough money, however. 
Initially the player must have more than four money units in its pool in order to 
buy, but this value gradually increases as the game progresses (this is why the steps 
value appears in the condition). This condition was added to make sure the artificial  
player did not exhaust its money too quickly and lose the game early on. We set 

FIGURe 8.4
a two-player version  
of Monopoly
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it up so that the minimum amount of money the artificial player keeps in its pool 
gradually increases, because as more property is bought by each player, the chances 
increase that the player will have to pay more rent on consecutive turns. It needs to 
keep a larger and larger reserve as time goes on.

Simulated Play-Test Analysis
Running these identical players against each other and tracking the amount of money 
that each player has over multiple sessions produces a chart like the one in Figure 8.5.   
Reading this chart is not easy, but a few features do stand out. The amount of money 
that both players have stays more or less stable for the first 90 steps or so but then 
starts to increase gradually. Figure 8.6 highlights this trend. (We added the Trend 
line for illustration; it was not generated by the Machinations Tool.) As we discussed 
in previous chapters, this trend is the result of the positive feedback that is at the 
heart of Monopoly. More importantly, it is typical of the dynamic engine pattern dis-
cussed in Chapter 7, “Design Patterns” (see also Appendix B).

To better study this trend, we can remove all randomness from the diagram. This is 
done by changing the production rates, the implementation of the rent mechanism, 
and the script of the artificial players. Figure 8.7 reflects these changes. The new 
script for the deterministic artificial players is as follows:

if((steps % 10 < 1) && (Money > 4 + steps * 0.04)) fire(Buy)

FIGURe 8.5
multiple sessions of 
simulated play. The 
brighter lines are the 
most recent run.

FIGURe 8.6
The trend in the 
gameplay
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You can see the result of simulated play session in Figure 8.8. The trend is very clear 
in this chart. (Note that in this chart the two players completely overlap because they 
are following identical strategies, so only one player is visible.) Also note that in this 
chart the number of properties owned by each player is represented as a thin line.

The effects of luck
To study the effects of luck on the game of Monopoly, we then changed the script of 
the red player to read as follows:

if((steps % 20 < 1) && (Money > 4 + steps * 0.02)) fire(Buy)

This leads to a situation in which the red player has only half as many opportunities 
to buy a new property. Instead of buying every 10 steps, red buys only every 20 steps.  
Figure 8.9 displays a chart that reflects these changes. If you look only at the money 
lines, the players’ fortunes don’t seem that different initially. However, as any expe-
rienced player of Monopoly will tell you, the game is all about getting the properties. 
The difference in properties held is the real indication of the players’ strengths.

FIGURe 8.7
a deterministic version 
of Monopoly

FIGURe 8.8
a simulated play ses-
sion of deterministic 
Monopoly
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Using this chart, we can study the effects of randomizing various mechanics. For 
example, Figure 8.10 illustrates the effects of randomizing the time it takes to pass 
Go again (by restoring the production rate of that pool to 2/(3+D5), thus 2 every 4 
to 8 turns). As you can see, the effects are not that great. Most importantly, it does 
not affect the main trend of the game very much. Passing Go doesn’t really influ-
ence the game significantly.

The effects of randomizing the rent mechanism, as shown by Figure 8.11, are 
greater. Even so, it does not break the general trend (although if you look at the 
chart carefully, you might notice that it sometimes results in red having much less 
money and therefore being able to buy fewer properties).

FIGURe 8.9
The effect of a consis-
tent difference in luck. 
Thick lines are money 
owned; thin lines are 
properties owned.

FIGURe 8.10
The effect of random-
izing how often the 
players pass Go

FIGURe 8.11
The effect of ran-
domizing the rent 
mechanism
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However, randomizing the chance that a player gets the opportunity to buy property 
has a far greater effect (Figure 8.12). Most importantly, it affects the distribution of 
properties between players and impacts the money distribution as a result. To imple-
ment the different opportunities, the script for the blue player reads as follows:

if((random * 10 < 1) && (Money > 4 + steps * 0.02)) fire(Buy)

While the script for the red player reads as follows:

if((random * 20 < 1) && (Money > 4 + steps * 0.02)) fire(Buy)

If we put all these effects in a single diagram, the chart looks like the one in Figure 
8.13. Note, however, that this chart is different from the first chart of Monopoly
(Figure 8.5), because in this chart the odds are still against the red player. He has 
about half as many opportunities to buy a property as the blue player. Also note that 
although the fortunes of both players are more varied, red rarely wins.

Rent and Income balance
One problem with our model of Monopoly is that in most runs the game doesn’t 
end in victory for one player, so the Machinations Tool stops the simulation after a 
while. One player might get rich because he takes more rent from the other player, 
but as long as the other player can compensate for it by passing Go frequently enough, 
the game goes on indefinitely. This is because, so far, our model hasn’t implemented 
the rent inflation that is built into the real game. Houses and hotels are a critically 
important part of Monopoly. They allow the player to invest in his properties, which 

FIGURe 8.12
The effect of randomiz-
ing the opportunity to 
buy property

FIGURe 8.13
all mechanics 
randomized
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increases the rent if another player ends a turn on his property. Figure 8.14 adds 
this mechanism to the game. In this diagram, players can buy both properties and 
houses, which increases their chance to get a bigger payout when receiving rent.

To allow the artificial players to use the new gameplay option, we used the follow-
ing script:

if((random * 10 < 1) && (Money > 4 + steps * 0.04)) fire(Buy)

if((Property > Houses / 5) && Money > 6 + steps * 0.04)) fire(Invest)

The first line of the script is just the same as it was: The player has a random 10% 
chance of buying a property every time step, if he has enough money saved. The 
second line states that if he has more than five times as many properties as houses 
(and even more money saved), then he invests in a house.

The best way to see the effect of this balance is to turn the diagram into a deter-
ministic version (removing all random factors), increase the income from passing 
Go, and have one artificial player invest in houses and the other not. Without the 
option to invest in houses, both players enjoy an identical steady increase of money, 
as shown by the purple line in Figure 8.15. But if one player does invest (blue) 
while the other does not (red), the one who invests will win.

FIGURe 8.14
Monopoly with an 
additional mechanism 
to buy houses

FIGURe 8.15
The effects of investing 
in houses
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What we’ve done here is to change the balance between income from passing Go 
and costs from paying rent. It’s no longer possible to pass Go enough to cover the 
rising rent—even if we set the amount earned by passing Go fairly high. We ran a 
nondeterministic diagram 1,000 times in which both players invest in houses, with 
an income from Go set to 5/(3+D5). We learned that somebody will win the game 
roughly 75% of the time (with an equal chance of either player winning). The other 
25% of the time the game drags on until the Machinations Tool stops it. But with 
income set to 2/(3+D5), the chances of a game dragging on forever drop to zero. 
With a high income and the effects of rent inflation doubled, the chance of entering 
an equilibrium is reduced to 2%. The graphs these settings produce in general look 
quite interesting (Figure 8.16).

Adding Dynamic Friction
Our model of Monopoly has now added rent inflation and solved the early prob-
lem that passing Go permitted the game to go on forever. However, the power of 
property is now actually too high. Having more property than your opponent is 
the most significant indicator of who is going to win. This means that the dynamic 

FIGURe 8.16
a better balance 
between rent and 
income
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engine pattern in the game is too dominant. Looking through the design patterns in 
Appendix B suggests a solution: By applying dynamic friction, the positive feedback 
might be kept in check.

We can easily introduce dynamic friction by adding a form of property tax (and 
indeed property tax, in a different form, does exist in the board game). At certain 
intervals, the player loses money based on the number of properties and/or houses 
she has. The new construction is represented in Figure 8.17. The new property tax 
mechanism, a drain off each player’s Money pool, is shown with thick lines. It drains 
some money (initially set to zero) every six time steps. The amount that it drains 
goes up as the player collects property and houses; this is controlled by thick-lined 
state connections (dotted lines) from the player’s Houses and Property pools to the 
label on the resource connection leading to the Property Tax drain. The tax rate 
shown in the diagram is 6% per house and 30% per property.

Table 8.2 lists the statistics gathered from simulating the game 1,000 times with dif-
ferent settings for the property tax. Blue was programmed to buy 14 properties, and 
red to buy 6. The table exhibits a couple of interesting features. With no taxes, blue 
has a clear advantage produced by his larger number of properties. As tax rates go 
up, however, blue’s advantage decreases. Greater than a certain point, the taxes are 
so high that blue’s properties are actually a disadvantage to his economic success, 
and blue starts to lose more often than he wins. Set correctly, the taxes do indeed 
act as dynamic friction, reducing the effect of positive feedback.

Both artificial players are set to purchase property and houses at the earliest available 
opportunity, which might not be the best strategy if property taxes are in operation. 
They might do better if they played a bit more conservatively.

FIGURe 8.17
Monopoly with a prop-
erty tax mechanism
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Another thing to notice in the table is that the property taxes reduce the number of 
“no winner” outcomes. This, too, is a desirable quality in a game: The friction helps 
prevent stalemates.

TA x R AT E 
PROPERT y/HOuSES

BluE W I NS 
(Bu ys  14  Prope r t ies )

RED W I NS 
(Bu ys  6  Prop e r t ies )

NO 
W I NNER

no taxes 632 152 216

0.1/0.02 557 314 129

0.2/0.04 472 503 25

0.3/0.06 456 542 2

Balancing SimWar
So far, all the extended examples in this book have been about games that have 
already been published. But the Machinations framework is not just a tool for analy-
sis. To demonstrate the framework’s value for designing new games, we will discuss 
in detail a game that (to our knowledge) never has been built yet is known to game 
design community. This game is SimWar.

SimWar was presented during the Game Developers’ Conference in 2003 by game 
designer Will Wright, who is well-known for his published simulation games, 
SimCity and The Sims, among many others. SimWar is a hypothetical, minimalistic 
war game that features only three units: factories, immobile defensive units, and 
mobile offensive units. These units can be built by spending an unspecified resource 
that is produced by factories. The more factories a player has, the more resources 
become available to build new units. Only offensive units can move around the 
map. When an offensive unit meets an enemy defensive unit there is a 50% chance 
that one destroys the other, and vice versa. Figure 8.18 is a visual summary of the 
game and includes the respective building costs of the three units. 

TAble 8.2
effects of different 
Property Tax rate 
settings

FIGURe 8.18
a visual summary of 
simWar (Wright, 2003)
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During his presentation, Wright argued that this minimal real-time strategy game 
still presents the player with some interesting choices and displays dynamic behavior 
similar to that found in other games within the same genre. Most notably Wright 
argued that a rock-paper-scissors mechanism affects the three units: Building factories 
trumps building defenses, building defenses trumps building offensive units, and 
building offensive units trumps building factories. Wright also describes a short-
term vs. long-term trade-off and a high-risk/high-reward strategy that recalls the 
“rush” and “turtle” strategies found in many real-time strategy games (see the side-
bar “Turtling vs. Rushing”).

turtlinG Vs. rushinG

Turtling and rushing are two common strategies found in many real-time strategy games. 
a turtling player builds up his defenses and production capacity while holding off enemy 
attacks; he then tries to use his superior production capacity to build a large attack wave 
and overwhelm the opponent’s defenses. in contrast, a rushing player focuses on attack-
ing early in the hope of overwhelming the opposition before they have a chance to dig in. 
rushing is generally considered to be a high-risk/high-reward strategy and frequently 
requires more skill of the player. To rush successfully, a player must be able to perform 
many actions per minute.

Modeling SimWar
In this section, we build a model of SimWar in stages, using Machinations diagrams. 
The mechanics we build in each stage follow the same structure as the ones we 
offered as real-time strategy examples in Chapter 6.

Starting with the production mechanism, we use a pool (Resources) to represent a 
player’s collected resources (Figure 8.19). The pool is filled by another automatic 
pool that represents the uncollected resources available to the player. The game’s 
production rate is initially 0 but increases by 0.25 for every factory the player builds. 
The player can build factories by clicking the interactive converter labeled BuildF, 
which will pull resources only when at least five are available. The structure is a 
typical implementation of the dynamic engine pattern that we discussed in Chapter 
7. Like all dynamic engines, it creates a positive feedback loop: The more factories a 
player builds, the quicker resources are produced, which in turn can be used to build 
even more factories. However, as the resources are ultimately limited, building only 
factories might not be the best idea. Notice that, in this case, the structure requires 
players to start with at least five resources already collected or one factory already 
built. Otherwise, players can never start producing.
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Resources are also used to build offensive and defensive units. Figure 8.20 illustrates 
the mechanics for this. The diagram uses color-coded resources. The units produced 
by the converter labeled BuildD are blue, while the units produced by BuildO are green 
as indicated by the color of their respective outputs. This means that blue resources 
(representing defensive units) and green resources (representing offensive units) are  
both gathered on the Defense pool. However, clicking the Attack pool will pull all green 
resources toward it. This way, only offensive units can be used to launch an attack.

Figure 8.21 illustrates how combat between two players is modeled. In each time 
step, each attacking unit of one player has a chance to destroy a defending unit of 
the other player, and similarly, defending units have a chance to destroy attacking 
units. Attacking units also have a chance to destroy enemy factories, but that drain 
is active only when the defending player has no defending units left.

FIGURe 8.19
Factories produce 
resources.

FIGURe 8.20
spending resources 
to build offensive and 
defensive units

FIGURe 8.21
attacking and 
defending
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Putting It All Together
Combining the structures of each step, we have a model for a two-player version of 
SimWar (Figure 8.22). One player controls the blue (defensive) and green (offensive) 
elements on the left side of the diagram, while the other player controls the red 
(defensive) and orange (offensive) elements on the right side of the diagram. The 
two sides are symmetrical. 

Figure 8.23 displays the relative strength of each player as it developed over time 
during a simulated session. We chose an arbitrary definition of strength: We gave  
five points for each factory owned, plus one for each defensive unit, one for each 
offensive unit in reserve, and two for each offensive unit currently attacking. The 
chart displays what looks like an interesting and close match. This might suggest a 
balanced game, but because both artificial players were following the same strategy, 
we cannot jump to that conclusion.

FIGURe 8.22
Two-player version of 
simWar

FIGURe 8.23
Two players playing
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Defining Artificial Players
If you are looking for a challenge yourself, try to beat our artificial player called  
random turtle in a simulated game of SimWar. You can find it on the companion 
website (see the “Playing SimWar on the Companion Website” sidebar). This player 
follows a turtling strategy: It builds up its defense and factories before building offen-
sive units and launching attacks. Its behavior is determined by the following script:

if(Defense <= 3 + pregen0 * 3) do(BuyD)

if(Factories <= 2 + pregen1 * 3) do(BuyF)

if(Defense > 6 + pregen2 * 3 && random < 0.2) do(Attack)

if(Resources > pregen3 * 4) do(BuyO)

Note that this script uses the pregenerated random values (pregen0—pregen3) in order 
to alter its strategies a little every time the simulation runs. It will build between 
four and six defensive units first, then build between three and five factories, before 
focusing on the attack.

playinG simWar on the companion Website

Go to the companion website at www.peachpit.com/gamemechanics and find the section 
on simWar. The complete version looks like Figure 8.22 but includes artificial players and 
a chart to allow you to see the progress of the game. You can easily modify the artificial 
players and the balance tweaks described in the section “Tweaking the Balance.” To 
have the diagram play itself automatically, make sure one of each color of artificial player 
is activated while playing. To play against an artificial player yourself, simply deactivate 
all the artificial players for the color you want to control and click the interactive diagram 
nodes yourself. note that the black artificial player is not a competitor. its only function 
is to stop the game from running too long in the event of a stalemate.

Fun as it may be to play against the “random turtle” strategy or investigate the data 
from having two of those artificial players face each other, it reveals little of the bal-
ance of the game. Most strategy games allow for rushing and turtling strategies. The 
following script defines our turtling strategy:

if(Defense < 4) fire(BuyD)

if(Factories < 4) fire(BuyF)

if(Defense > 9 && random < 0.2) fire(Attack)

if(Resources > 3) fire(BuyO)

Our turtle strategy gives priority to building four defensive units and four factories 
first. After that, it starts building offensive units and starts attacking if it has a total 
of ten or more units.

www.peachpit.com/gamemechanics
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The following script defines our rushing strategy:

if(Defense < 3) fire(BuyD)

if(Factories < 2) fire(BuyF)

if(Defense > 5 + steps * 0.05 && random<0.2) fire(Attack)

if(Resources > 1) fire(BuyO)

This script puts far less priority on building factories and defenses. It buys two defenses 
and then one factory and then starts producing offensive units. Initially it will try to 
launch waves quickly, but as time progresses, it tries to save up for bigger assaults.

Note that, apart from the random factor used to time attacks, the scripts define very 
consistent strategies. The artificial players will always follow the same strategy, 
whether it is successful or not. Because their behavior is consistent, they are ideal to 
determine which strategy is more effective, rushing or turtling. A thousand simulated   
runs reveal that the turtling strategy is superior by far: It wins roughly 92% of the 
time. What’s more, a large proportion of the wins for the rushing player are the result 
of the turtling player running out of resources—which doesn’t occur very often.

Tweaking the balance
Clearly, turtling is too successful in our model of SimWar. To find a better balance, 
we can try to tweak several values. We’ll start with changing the production costs 
for each unit type. You can find the results for 1,000 simulated runs for each tweak 
in Table 8.3.

Surprisingly, these tests show us that increasing the cost for defensive units has little 
impact on the balance between rushing and turtling strategies. Only when a defen-
sive unit costs more than an offensive unit, making it a really poor choice, does 
the turtle strategy start to lose more frequently than the rushing strategy does. This 
leads to the conclusion that the balance between rushing and turtling strategy is 
mostly affected by the balance between production and offensive units and little by 
the balance between offensive and defensive units. Also notice that increasing the 
factory costs initially increases the average game length, but it stabilizes when a fac-
tory costs eight or more units. This can be explained by the fact that increasing the 
factory cost slows the game down because it takes more time to build up produc-
tion capacity. At the same time, a very high factory cost favors the rushing strategy, 
which tends to win faster than the turtling strategy. At high factory costs, the sec-
ond effect dominates the first effect.

NOT E each row gives 
the results from 1,000 
runs, done automati-
cally. however, the 
process of changing 
the tweaks required 
manually adjusting the 
diagram.
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T W E A k
T uRT lE  
W I NS

RuSH  
W I NS

DR AW OR
T IMEOuT

Av ER AGE  
T IME

no tweaks 929 68 3 70.97

defense 1.5 890 105 5 74.27

defense 2.0 660 337 3 77.88

defense 2.5 515 480 5 74.04

Factory 6 844 154 2 78.81

Factory 7 792 204 4 88.07

Factory 8 710 278 12 98.53

Factory 9 568 401 31 107.87

Factory 10 455 509 36 107.61

Offense 1.8 914 83 3 67.77

Offense 1.6 888 112 0 63.86

Offense 1.4 802 198 0 58.31

Offense 1.2 653 347 0 52.33

Offense 1.0 506 494 0 48.33

chanGe one thinG at a time and  
exaGGerate the chanGes

When balancing a game, it is usually best to try one change at a time. if you change 
two things, you can never be sure what change contributed what effect. in addition, it is 
usually best to start with a pretty big change first. That way, you are sure that the change 
is actually having any effect and moves the balance in the direction that you want it to 
move. You can always change the value back to somewhere halfway between the original 
and the new situation.

We can also change the balance between the costs of factories and the costs of  
units by increasing or reducing their effects. In this case, we tried different variables 
for the factories’ production rates (the number of resources each factory produces) 
and the chance that attacking units will destroy defensive ones. We also tried differ-
ent settings for the initial and total available resources. Table 8.4 lists the effects of 
these tweaks.

TAble 8.3
effects of Tweaking 
Production costs in 
simWar
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T W E A k T uRT lE  
W I NS

RuSH  
W I NS

DR AW OR
T IMEOuT

Av ER AGE  
T IME

no tweaks 929 68 3 70.97

Production rate 0.20 847 152 1 88.99

Production rate 0.15 750 248 2 124.34

Production rate 0.10 396 565 39 208.56

Offensive fire power 30% 919 81 0 65.22

Offensive fire power 35% 863 137 0 59.43

Offensive fire power 40% 811 189 0 56.55

Offensive fire power 45% 755 245 0 56.07

Offensive fire power 50% 627 373 0 51.95

starting resources 4 883 114 3 76.43

starting resources 3 885 114 1 79.26

starting resources 2 877 122 1 84.95

starting resources 1 855 144 1 89.51

starting resources 0 797 200 3 98.73

available resources 110 937 63 0 69.85

available resources 120 949 51 0 69.43

available resources 130 945 55 0 71.11

available resources 200 970 30 0 71.18

available resources 90 911 84 5 73.12

available resources 80 860 125 15 80.82

available resources 70 839 134 27 85.96

The best balance is probably found by applying a combination of these tweaks. For 
example, keeping an eye on the average playing time, we opted to reduce the pro-
duction rate to 0.20, the factory cost to 7, and the offensive power to 35%. With 
these mechanics, the two strategies are evenly balanced (in the test run, each won 
exactly 500 times!) against an average playing time of 83.02 time steps.

TAble 8.4
effects of various 
Tweaks on the Balance 
of simWar
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From Model to Game
Balancing a Machinations diagram is a useful exercise, but it doesn’t guaran-
tee that the game you are working on will automatically be balanced as well. A 
Machinations diagram represents an abstract perspective on your game. It lacks 
detail, and as a result, your real game might behave a little differently. When you 
balance a Machinations diagram, you should be aware of these differences. The 
closer your game design is to the Machinations diagram, the more likely it is that 
your balancing efforts in the Machinations Tool will translate directly to the game. 
But remember that Machinations cannot account for peculiarities of human player 
behavior (such as bluffing) or the effects of strategic maneuvering in a war game.

However, playing with the balance of a diagram is usually worth the effort, even if 
the balance does not translate directly. By spending some time balancing the dia-
gram, you are gaining insights into balancing the real game. As long as the structure 
of the diagram matches the structure of the mechanics, you can expect that certain 
effects will be similar. For example, finding out that the relative costs of factories 
and offensive units in SimWar has a great impact on the balance between turtling 
and rushing strategies will help you when you are looking for the right balance in 
a full implementation of the game. By running play tests on the diagram, you are 
likely to recognize gameplay patterns that will emerge from play testing the full game. 

Summary
To balance a game, you must play test it many times, and this can be difficult with 
long and complex games. The Machinations Tool lets you simulate play tests rap-
idly by creating artificial players that execute simple strategies automatically. You 
can run hundreds of play tests in a few seconds and collect statistical data to show 
whether your game is balanced and how well different strategies work.

Monopoly, as always, serves as a good game to analyze. In this chapter, we built a 
model of Monopoly that included buying properties and houses and showed how dif-
ferent purchasing strategies changed the balance of the game. We also demonstrated 
how to reduce the effect of strong positive feedback produced by the dynamic engine
pattern that generates income from rent by introducing a dynamic friction pattern as 
well. For our example, we used a tax on houses and properties.

To end the chapter, we modeled Will Wright’s hypothetical game SimWar and showed 
how tweaking its various features over many simulated play tests resulted in differ-
ing levels of success for two player strategies, rushing and turtling. This is exactly 
the sort of testing you have to do when designing a new internal economy for a 
game, which demonstrates the value of Machinations to professional game design.
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Exercises
1. Change the mechanics of Monopoly (the real board game) so that the game ends 
sooner and is better balanced than the original.

2. Define artificial player strategies for Monopoly that reflect a different preference 
for buying houses and buying properties, without altering the chances of getting  
an opportunity to buy. Can you find one that has a significantly better chance to 
beat the artificial player used in our experiments?

3. Hold a competition to find out who can build the best artificial player for 
SimWar. You may add multiple artificial players that control one another, but you 
may not change the basic structure of the diagram. Alternatively, use the better  
balanced settings (production rate 0.20, factory cost 7, offensive fire power 35%)  
for this competition.

4. Investigate how different building times for the units in SimWar affect the  
balance of that game.
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So far, we have been treating the internal economies of games as static structures 
that do not change as the game is played. The economy itself can be dynamic, but 
its basic structure—the relationships among its elements—never changes. This is 
true of many games such as Monopoly, which we’ve used extensively as an example. 
But some games allow players to actually build the structure of the economy them-
selves, by adding new sources and drains, for example. In this chapter, we explore 
economy-building games and how you can use the Machinations framework to 
design them. 

Economy-Building Games
Most, but not all, economy-building games belong to either the construction and 
management simulation genre or the strategy genre. Good examples are Civilization, 
SimCity, and, to a lesser extent, StarCraft. In these games the player constructs build-
ings and other edifices (we’ll call them all buildings to avoid ambiguity) in the game 
world. Based on their juxtaposition, these buildings establish economic relationships  
with each other. The effectiveness of the economy depends on the player’s decisions: 
what buildings he built, where he put them, how much infrastructure connects 
them together, and so on. The landscape itself also contributes to the economy, and 
it is important that players make the best use of it. Civilization and SimCity offer 
endless variety, because they come with build-in random world generators. Each 
new world creates different challenges and opportunities for the player constructing 
an economy.

Goals in economy building tend to be loosely defined, as in SimCity, or are very 
long-term and offer many different ways to reach them. Often, players set their own 
(intermediate) goals, and for many players, building a stable and growing economy 
becomes a goal in its own right. If missions exist at all in these games, they often 
consist of a single task: to build an economy that achieves a particular state or exists 
within certain limits.

The economies in these games usually start with production of basic resources but 
tend to get more complicated quickly. For example, in Civilization, players initially  
worry about gathering enough food to feed their cities and collecting enough resources 
to build a few defensive units. At a later stage, they need to start producing gold to 
finance special buildings and research. The location of the city affects the produc-
tion rates: Building a city on fertile grasslands increases food production, rivers 
increase trade and wealth, while hills and mountains offer the opportunity to build 
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mines to increase production of buildings and units. Players must find locations to 
construct upon that best suit their strategy. A player who wants a strong military will 
need to produce more raw materials, while building close to rivers can speed up 
trade, wealth, and scientific advancements. The player must consider both long-term 
and short-term issues: Cities whose population grows fast will eventually produce 
more resources than cities that are located close to interesting resources but far from 
fertile soil, which is needed for population growth. Civilization’s default mode of 
play randomly generates a landscape (Figure 9.1) for every game the player starts. 
Players must make the most of the land they have discovered.

The diagrams that we used earlier to represent StarCraft and similar real-time strat-
egy games took into account only a single base in which players build every type of  
building only once. In reality, players often construct the same building multiple 
times. They also start new bases set at different distances from vital sources of gas 
and minerals. You can add these options into a Machinations diagram, but that 
would complicate it a lot without actually making the structure of the game clearer. 
Using the Machinations framework to model more complex games like Civilization
or SimCity in their entirety is daunting. Although many of the individual mechanics 
can be easily captured using Machinations diagrams, different sessions require dif-
ferent diagrams because players effectively hook up game elements differently every 
time. It simply is impossible to try to make one big Machinations diagram that 
manages to capture all these options. To understand and design economy building 
games, we need a more flexible way of using Machinations diagrams. To illustrate it, 
we’ll analyze one game in more detail: Caesar III.

FIGURe 9.1
Civilization V
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Analyzing Caesar III
The Roman city simulation game Caesar III (Figure 9.2) is a good example of an 
economy-building game. In this game, players grow cities in the era of the Roman 
Empire. They need to build infrastructure for traffic and water and construct build-
ings to produce food and other basic resources. To expand the city’s economy, the 
player needs residences, workshops, markets, and warehouses. The simulated citi-
zens demand temples, schools, and theaters, and at the same time, the player must 
provide security against different types of threats by building prefectures, city walls, 
and hospitals. Finally, the player must train soldiers to protect the city from invad-
ing barbarians. 

The city’s economy is dominated by a multitude of resources. Farms produce wheat, 
fruits, or olives, and clay pits produce clay that can be converted into pottery in  
special workshops. Other workshops convert olives into oil, or metal into arms.  
The residences the player builds are in constant need of these and other goods. 
The better the player can supply these residences, the wealthier their inhabitants 
become. This has two advantages. First, wealthier houses can house more people 
and generate more labor to operate the farms and workshops (at least initially). 
Second, wealthier citizens pay more tax money needed to build more farms, work-
shops, and residences; to pay the salaries of prefectures that keep the city safe from 
crime and fire; or to pay the military to protect the city from invading barbarians.  

FIGURe 9.2
Caesar III
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In the meantime, players need to build granaries, markets, and warehouses to dis-
tribute all these goods effectively over the growing city.

One of the advantages of studying Caesar III is that it makes most of the resource 
flows visible. The player has to build roads to connect farms to markets and to con-
nect houses to workshops. She can see people in the game carry goods from one 
place to another. New citizens flow into the city from a particular edge of the map 
and leave the city on a different side. In Caesar III, the structure of the economy 
closely resembles the map of the city.

Figure 9.3 represents the basic economic relationships among some of these ele-
ments. The consumption of trade goods in residences triggers the production of 
wealth. More wealth has a positive effect on the amount of labor generated and 
money generated through taxes. At the same time, wealth drains quickly, creating 
an ever-increasing need to supply residences with high-quality trade goods.

In the game, the actual connections between all these elements are flexible: A farm 
might deliver its crops to a granary, warehouse, or workshop depending on the 
needs and the distances to these locations (Figure 9.4). The challenge of Caesar III  
is to utilize space effectively and build a smoothly running economy. Players gradu-
ally build this economy as they see fit, but it will invariably be dominated by the 
positive feedback loop that involves production, consumption by citizens, and tax 

FIGURe 9.3
Basic economic rela-

tionships in Caesar III, 
with different colors 
indicating the flow of 
different resources
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income. This positive feedback is balanced by the negative feedback provided by the 
dynamic friction built into the residence mechanism (Figure 9.3). The more effective 
players are at utilizing space and building up their city, the more effectively their 
economic engine will run.

many more mechanisms

Caesar III includes a few more elements that we have left out for the sake of discussion. 
in the real game, players also need to manage a number of hazards such as crime and 
fire by constructing special buildings to counter these effects. They serve to compli-
cate the production mechanisms further. apart from nutrition and wealth, the citizens 
also demand entertainment, culture, education, and religion, which are produced and 
consumed in similar ways. Finally, in most levels of Caesar III, players need to deal with 
demands of the roman emperor and to fight invading barbarians. They act as extra, but 
intermittent, friction on the economic engine.

FIGURe 9.4
a map of the economic 

buildings in Caesar III
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Dominant economic Structure
To get a better grip on a complex and elusive economy like the one in Caesar III,
we’ll zoom out a little and look at the economy on a more abstract level. Figure 9.5  
reveals the dominant economic structure of the game. To build an effective economy, 
the player needs to be aware of the feedback loop that exists between residences, 
production, and distribution. He must try to invest in such a way that the city pro-
duces enough money to keep expanding and paying for its upkeep.

You can find no less than four design patterns implemented in this diagram. The 
feedback between residences and economic infrastructure acts as a converter engine
with labor and trade goods forming the production loop. In addition, building 
investments follows the engine building pattern because it improves the main con-
verter engine that drives the economy. Investments also activate dynamic friction by 
raising salaries and upkeep costs. Therefore, building causes multiple feedback. 

The dominant economic structure in Caesar III sets up a template for the ideal econ-
omy in the game. The economy a player builds will gravitate toward this structure. 
However, planning and building this structure is no trivial task. The game is set up 
in a way that simply drawing a map for a perfect city is impossible. There are four 
main impediments to building the economy in Caesar III:

n	 The landscape restricts the player. It dictates how much space is available and 
dictates the location where certain production buildings can be constructed (a 
timber yard must be built close to woods; a marble quarry must be built close to 
mountains). Bodies of water restrict movement and the construction of infrastruc-
ture. Certain resources simply are not available on a particular map (for example, 
olive farms are not available in the British Isles). Each map provides its own unique 

FIGURe 9.5
The dominant eco-
nomic structure of 

Caesar III
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challenges and forces the player to improvise as the circumstances dictate. A build-
ing strategy that works in one landscape might not be as effective in another.

n	 The player starts with a limited amount of money to start building. She must 
earn the money for further development as she goes along. The player is offered a 
loan when she runs out of money, but she has to pay it back or face the wrath of 
the Roman emperor (who will eventually send his legions to attack the city). The 
economy responds fairly slowly to changes, creating an unpredictable rhythm of 
good and bad economic tides (see the “Make Negative Feedback Slow and Durable” 
sidebar). A player might get into trouble when crucial buildings collapse or burn 
down because she forgot to hire enough prefectures or engineers, locally collapsing 
the entire economy.

n	 On many maps, the player can be attacked by invading barbarians, requiring her 
to focus both on building and defending the city. Attacks create periodic threats 
that increase over time. The player must prepare her defenses in advance, creating 
a delicate balance between short-term (making ready for the next attack) and long-
term (building up the economy) effects. This adds additional patterns and is more 
difficult to manage than a city that is less prone to attack. 

n	 Certain missions require players to produce large quantities of particular trade 
goods to please the emperor. This makes the player dependent on trade with other 
cities for vital resources. Such an economy will have sudden, periodic changes in 
the number of trade goods in circulation. These rapid shifts can wreak havoc on the 
economic balance. The wealthier the city gets, the more delicate the balance that is 
required to maintain its wealth.

make neGatiVe Feedback sloW and durable

incorporating negative feedback is a good way to create a stable, balanced economy in a 
game. however, it can also make a game too easy and too predictable. One design strat-
egy you can use to create a more delicately balanced game economy is to make negative 
feedback slower and more durable. For example, consider the diagrams and chart in 
Figure 9.6. The black line in the graph shows the setting of the input register; it changes 
as the user clicks the register. The negative feedback in the red diagram operates very 
fast and creates a stable economy, so the red line in the graph follows the changes in the 
input value very quickly. The negative feedback, shown by the blue diagram, is equally 
strong, but its effects are delayed: The blue line follows a more unpredictable pattern 
as a result of changing input values. The purple diagram also makes the effects more 
durable, creating an even more erratic pattern.

continues on next page
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make neGatiVe Feedback sloW and durable continued

FIGURe 9.6 The effects of making negative feedback slower and more durable

building blocks
To further explore the economy of Caesar III, we’ll zoom in on the mechanics of par-
ticular buildings and try to understand them in isolation. Figure 9.7 gives detailed 
mechanics for four types of buildings that appear in Caesar III: residences, olive 
farms, oil workshops, and markets. 

n	 The mechanics for residences are just as we presented them in Figure 9.5: Goods 
come in and form a pool of wealth, which increases the production rates of both 
money and labor, and the goods are also consumed there. If the goods are con-
sumed faster than they come in, the pool is emptied, and the production rates of 
money and labor go down.

n	 The mechanics for farms provide more details about how labor is used to produce 
goods. Labor resources arrive and are delayed for a period. During this period they 
set the production of olives from the olive source proportionately to the number 
of labor resources in the delay. The olives go into a pool to await being pulled by 
something on the outside. The diagram includes a state connection from the delay 
to resource connection bringing in labor, whose function is to make sure there are 
always six labor resources in the delay at one time. After passing through the delay, 
the labor resources are consumed by a drain. (Note that labor resources are not 
human beings; they are units of work.)
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n	 Workshops use their labor resources to produce and to collect the resources their 
production process requires. Like the olive farm, the oil workshop delays labor 
resources arriving, and while there, labor resources help pull olives from elsewhere 
and store them in a local pool. The labor also helps convert the olives into oil. The 
oil is stored in another pool until pulled from elsewhere, and the labor resources drain.

n	 Markets work like farms and workshops in that they use labor to pull in resources 
from elsewhere. However, all they do is store the resources in a pool until required 
by an outside process. A market disables its input after it has pulled a certain num-
ber of resources, reflecting the fact that it can hold only so many.

FIGURe 9.7
detailed mechanics 
for residences, farms, 
workshops, and  

markets in Caesar III
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An important aspect of these economic components is that they can be hooked 
up in various ways. Olive farms and markets both need to tap into the general 
flow of labor resources to function. Farms produce resources that are stored at the 
farm and in that way are made available for other components in the economy. 
Another point you should note is that all these components have inputs and out-
puts, expanding the number of ways they can be hooked to other components and 
creating more opportunities to create long economic chains and loops. This way, 
the player is free to create many different constructions in the economy. For certain 
games, this might even mean there are different dominant economic structures  
that the player can build from its components.

phases oF proGression in caesar iii

Games in which players build an internal economy clearly fall into the category of games 
of emergence. still, playing these games does offer some experience of progression. 
Caesar III for example, provides a series of scenarios, each with its own particular 
challenges and goals, and within each scenario there are a number of scripted events. 
But even without these events, the process of building a city goes through a number of 
stages. in the initial planning stage, players still have enough money to build anything 
they might need. Later they find themselves managing crises or the city’s defense and, 
finally, fine-tuning the city’s economy to reach tough economic goals during the end 
stages of the later levels.

an important mechanism that contributes to this sense of progression is that, initially, 
wealthier residences increase labor output, but after a certain point the labor produced 
by a residence actually decreases as its inhabitants grow wealthier. This means that be-
yond a certain wealth threshold the city starts losing labor, reducing the effects of many 
production buildings, which could destroy the economy. This creates phase transitions or 
barriers in the city’s growth that are hard to negotiate. 

Caesar III, as many other games of emergence, has its own rhythm and progression that 
partly emerges from its dynamic game economy and partly from the scripted events that 
are unique for every scenario.

Designing Lunar Colony
In the second part of this chapter, we will take the lessons learned from analyzing 
Caesar III and apply them toward designing a new economy building game called 
Lunar Colony. Lunar Colony is a multiplayer tabletop game that can be played with a 
set of poker chips, a few playing cards, and a single (six-sided) die. You don’t need 
a board to play; any flat surface will do. You can also use any other set of tokens as 
long as they are all of the same size (for one play test we used LEGO blocks, and that 
worked just fine). Depending on the number of colors of tokens you have access 
to, you can play with any number of players. You will need to keep track of each 
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player’s technology level on a piece of paper. A two-player game of Lunar Colony
should take 15 to 20 minutes to complete.

Throughout this section, we place more emphasis on human play testing than on 
simulating the game in the Machinations tool, although we still use Machinations 
diagrams to explain the game’s economy. Simulations can complement, but never 
replace, human play testing. 

Rules (First Prototype)
In Lunar Colony each player develops a research colony on the moon. The players  
compete for ore and ice, trying to build as many stations as possible. To do this, they  
must build an infrastructure, research new technologies, and manage their economy.

Game maTeriaL
To play this game, you will need the following:

n	 One playing card (used to measure distances).

n	 One six-sided die.

n	 At least 10 white tokens per player to represent ice.

n	 At least 10 black tokens per player to represent ore.

n	 At least 20 green tokens to represent energy points.

n	 About 20 tokens, all of the same color, to represent one player’s stations, and 20 
more of a different color for each additional player. You need as many different col-
ors as there are players. (Most poker chip sets include blue and red chips, suitable for 
two-player games.)

n	 A flat playing surface.

seTUP
To set up the game, the players must first create a playing area. (Like Civilization and 
SimCity, Lunar Colony starts with a “randomly generated” map.) Use the following 
procedure for this first prototype of the game:

n	 For each player in the game, set aside 10 ice tokens and 10 ore tokens. Create a 
single pile for all ice tokens and a single pile for all ore tokens. More may be needed 
during play, so keep them accessible too.

n	 The players take turns setting up the playing area. The first player starts the setup 
by rolling a die. If he rolls a 1, 2, 3, or 4, he takes that many ore tokens from the 
ore pile and places them anywhere on the playing surface in a single stack to form 
an ore lode. If he rolls a 5 or 6, he takes that many ice tokens from the ice pile and 
places them anywhere on the surface in a single stack to form an ice lode. 

NOT E We designed 
Lunar Colony as a 
tabletop game made 
from simple materi-
als. This way, you can 
both play and extend 
it easily. Throughout 
this section, you will 
find design challenges 
that suggest direc-
tions for you to explore. 
We encourage you to 
explore these ideas but 
also any other inter-
esting mechanics you 
might think of.
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n	 The next player rolls the die and does the same thing, placing ore or ice tokens 
somewhere on the table. Players keep placing tokens until both piles are depleted 
and all the tokens are on the table (if the die roll is higher than the number remain-
ing, simply put all the remaining tokens of that color into play).

Figure 9.8 displays what a two player setup might look like. Note that it is permis-
sible to place lodes adjacent to each other.

Once all the ice and ore tokens are placed on the table, the first player sets up his 
starting colony with three tokens of his color. These tokens represent stations. He 
must place one token so that it touches exactly one ice lode and one token so that 
it touches exactly one ore lode. This claims those lodes for him, and no other player 
may set up a station touching his lode. He may place the third token anywhere 
he likes, including to claim another lode. If it does not touch a lode, it is called a 
way station (see the next section, “Stations”) and is used to help transport ice and 
ore. Initially, these materials cannot be transported farther than the length of the 
short side of the playing card, so it is best to keep the stations relatively close to one 
another. Way stations are used to close larger gaps.

When the first player is finished, the next player sets up his colony in the same way, 
and so on, until all players have set up their colonies. Figure 9.9 shows how two 
players placed their colonies and are now ready to start playing.

FIGURe 9.8
ice and ore lodes 
spread across the  
“surface of the moon”

FIGURe 9.9
The game is set up, 
and two players (red 
and blue) are ready 
to play.
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sTaTiOns
In the game, the players build different types of stations. Stations are represented 
by stacks of tokens (initially just one) of their own color. Any station can store ice, 
ore, or both by stacking them. If a station is a mine, it stores whichever substance 
it mines, but any station can also store ice or ore received through transportation. 
Players can build the following stations:

n	 Ice mines. A station that touches an ice lode is an ice mine.

n	 Ore mines. A station that touches an ore lode is an ore mine.

n	 Way station. A station that doesn’t touch either an ice or an ore lode is a way 
station. Ice mines and ore mines whose lode is depleted automatically change into 
way stations.

PLaYinG The Game
Players take turns, and in each turn they may perform a number of actions. To 
determine the number of actions a player may perform, divide the number of sta-
tions he has by two and round up any fractions. Because the game always starts 
with three stations for each player, in the first turn each player will always get two 
actions. In each action, the player may choose to do one of the following:

n	 Mine for ice. Take one ice token from the ice lode next to one of his ice mines and 
store it on the mine (a station can have any number of ice or ore tokens stacked on it). 

n	 Mine for ore. Take one ore token from the ore lode next to one of his ore mines 
and store it on the mine.

n	 Transport resources. Move one ice or one ore token between two of his stations. 
The two stations cannot be farther apart than the short side of a playing card.

n	 Build a new station. Remove an ore token stored in any station and discard 
it. Place a new station of the player’s color somewhere on the surface, close to the 
station from which the ore came. The distance between the new station and the 
original station cannot be longer than the short side of a playing card.

n	 Expand station. Remove an ice and an ore token from a station (it must have at 
least one of each), discard them, and add an additional station token to the stack. 
The size of a station is the number of tokens of the player’s color in its stack. 

n	 Produce energy. As a single action, any station with ice stored in it can produce 
energy. To produce energy, remove any number of ice tokens from the station and 
discard them. For each ice token removed, the player receives as many energy tokens 
as the size of the station. (In other words, if the station is two tokens big and he 
removes three ice tokens from it, he will get six energy tokens.) Energy tokens are 
not stored in the playing area but held by the player.

n	 Research. Players can spend energy points to buy a technology (see the next  
section, ”Technology”).
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During one turn, any station can be used in action only once, so a station can be 
used only to mine, build, expand, or produce energy in a given turn. Transporting 
resources and doing research (buying a technology) are considered actions, but they 
do not involve a station in an action. Any number of resources may be moved to 
and from a station after which it can still be involved in another action.

TechnOLOGY
Players can spend their energy points to buy any one of the following technologies 
as a single action. Each technology costs three energy points:

n	 Fast Ice Mining. When mining for ice, the player can take two tokens from the 
mine’s supply instead of one.

n	 Efficient Ore Mining. For every ore the player mines from a lode, he can take 
one additional ore token from the unused ore tokens that are not on the map.

n	 Transportation Capacity. The player can move two substance tokens, instead of 
one, from one station to another station as a single action.

n	 Long Range Shuttles. The player can use the long side of the playing card 
instead of the short side to determine how far he can transport resources or at what 
distance he can build new stations.

n	 Luxurious Habitats. This technology comes into effect only when counting up 
the score. A player who has the Luxurious Habitats technology gains additional 
points for large stations. See the next section, “Winning the Game,” for details. 

When a player purchases one of these technologies, he should write it down on a 
piece of paper as public record that he has done so.

WinninG The Game
When any player mines either the last ore or the last ice from the surface of the 
moon, the game ends after he finishes his turn. The players then score the game 
as follows: Players who do not have the Luxurious Habitats technology score 
exactly one point for every station they hold of size two or more. Players who have 
purchased Luxurious Habitats count differently: They get extra points for larger sta-
tions: one point for each expansion above two. In other words, a size three station 
earns them two points, size four earns three points, and so on.

 The player with the most points wins.
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basic economic Structure
Figure 9.10 shows the basic economic structure of Lunar Colony. It is a color-coded 
and turn-based diagram. Mine Ice and Mine Ore are interactive nodes that pull these 
resources from their respective pools when clicked. (Mine Ice is a gate, while Mine 
Ore is a converter for reasons we’ll explain in a moment.) Buying the technology 
upgrades for ice and ore mining improves their productivity: Fast Ice Mining causes 
the Mine Ice gate to pull two ice resources instead of one. Efficient Ore Mining does 
not cause Mine Ore to pull two ore resources; rather, it causes the Mine Ore node to 
turn one incoming ore resource into two, which has to be done with a converter 
rather than a gate.

Once ice and ore resources have been mined, they go into a common pool labeled 
Resources. From this pool, ore is used to build stations, ice is used to produce energy, 
and both ore and ice are required to expand a station. The diagram also includes 
a very simple mechanism to simulate the fact that resources are distributed across 
the tabletop in the real game. The player starts with limited access to resources—he 
can use only the ones in the Accessible Ice and Accessible Ore pools. By building extra 
stations, he has a 50% chance of making more ore accessible and a 25% chance of 
making more ice accessible. These probabilities are taken from the density of the 
resources on the table, which was established during the setup phase.

FIGURe 9.10
The basic economy of 

Lunar Colony. This 
diagram requires  
additional details 
to work in the 
machinations Tool.

NOT E Figure 9.10 
has a register labeled 

Actions. in a turn-
based diagram, a 
register with that label 
can be used to change 
the number of actions 
a player can take every 
turn. in this case, it is 
used to increase the 
number of actions as 
the player builds more 
stations.
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The diagram omits a number of mechanics. It doesn’t show how ice and ore must  
be transported across the table, and it doesn’t show the Transportation Capacity  
and Long-Range Shuttles technology upgrades that affect that part of the game. 
Some of the mechanics are unspecified: The Luxurious Habitats technology has a 
positive effect on the number of points, but this depends on the size of the players’  
stations. Similarly, having more enlarged stations is likely to increase the energy 
production, but this also depends on factors such as station positioning and other 
player decisions.

The game features two design patterns. First there is a dynamic engine: ore and ice are 
used to produce research stations and energy points. The energy points in turn are 
used to improve the production of ore and ice. It’s easiest to spot this by looking at 
the loop for ice. A second dynamic engine increases the number of actions available 
per turn as the result of spending ore to build more stations. The second pattern is 
the engine-building pattern. Through technology research, the player has some con-
trol over what parts of her engine to improve (actions per turn or production rates).

Two things to notice about this economic structure are that it includes only positive 
feedback, and the game allows little direct interaction between the players. There’s 
no concept of attacking other players or stealing their resources. The most impor-
tant source of friction in the game comes from having to build way stations, which 
occurs if the distance between the resources on the tabletop is large. However, this 
friction is mostly static (it doesn’t change with the state of the engine) and is deter-
mined by the initial setup. As the game progresses, the friction may increase as the 
players need to build more way stations to get to the last resources on the table.

The basic game is already fairly balanced between the players in this initial proto-
type, although the starting positions they choose matter a great deal. The player 
who picks the best starting position is very likely to win, as you might have guessed 
from the lack of negative feedback in the economy.

desiGn challenGe

The end conditions for Lunar Colony might not be the best. can the game continue until 
all resources are removed from the surface or when all of them are consumed? What would 
happen if the game ends when somebody collects four or five points? What would be a 
better number of points, and why? design a different type of end condition for the game.

desiGn challenGe

By looking at the basic economic structure of the first prototype for Lunar Colony, think of 
a way to add negative feedback to the game. as a place to start, you might want to start 
by going over the design patterns in appendix B.
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building blocks
The first prototype has only one building block: stations. Figure 9.11 illustrates 
this building block. Mining stations act just like way stations with one exception: 
Mining stations can pull resources from the board. The mechanics for this building 
block fulfill the requirement that it can hook up with other blocks in the game in 
several ways. However, in the initial prototype, all the stations function in more or 
less the same way. The player needs to think about where to place stations to ensure 
that they are all close enough to one another to permit transportation. The only 
other consideration is which stations to expand. In general, the best choices for 
expansion are the stations that are close to ice and (to a lesser extent) close to ore.

With effectively only one building block, there won’t be much variation in the way 
players build up the economy. What the game needs is more types of stations to 
give the players more interesting choices.

To improve the game, we’ve designed three new stations: purifiers, refineries, and 
transporters. This second version of the game now requires two additional colors 
of tokens to represent purified ice or refined ore, respectively. We also changed the 
rule that states that the number of actions available is determined by the number 
of stations that a player has. Instead, every player starts the game with two actions, 
but one of our new stations will change that during the course of play. Figure 9.12
shows the new types of stations (note each has a different color token placed under
the player’s color):

n	 Purifiers take normal ice and turn it into twice as much purified ice by expend-
ing energy. Purifiers can’t be built from scratch or at the beginning of the game. 
Instead, they must be converted during the game from existing size 1 stations. To 

FIGURe 9.11
The mechanics for 

a station in Lunar 
Colony

FIGURe 9.12
new types of stations 

in Lunar Colony
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build a purifier from an ordinary size 1 station (ice mine, ore mine, or way station), 
the player must have at least one ice token stored in the station and pay two energy 
tokens. Place the ice token used under the station to indicate its new type. A puri-
fier can no longer be used to mine or produce energy and cannot expand. However, 
as a single action, the player can purify all the ice stored on the purifier (or as much 
as desired) by spending one energy token per ice token purified. To do this, replace 
each ice token to be purified in the station with two purified ice tokens from the 
reserves off the table. Purified ice cannot be purified further. Purified ice is not really 
different from, or more valuable than, ordinary ice. It is used in the same way, and 
all other stations can use purified ice instead of normal ice in their operations. The 
function of a purifier is simply to double the amount of ice available by expending 
energy.

n	 Refineries work on ore exactly as purifiers do on ice; the only difference is that the 
refining process costs more. As with purifiers, to build a refinery, take an ore token 
from the station, put it underneath the station as identification, and pay two energy 
tokens. When converting ore on the station, pay two energy tokens per ore token 
refined, and replace the ore token with two purified ore tokens.

n	 Transporters increase the number of actions the player can take in a turn and 
transport resources rapidly by expending energy. A player can change any ordinary  
size 1 station (ice mine, ore mine, or way station) into a transporter. To build a 
transporter, the player pays two energy tokens. Place one energy token under the 
station to indicate its new type. Like purifiers and refineries, a transporter can no 
longer be used to mine or produce energy and cannot expand. For each transporter 
the player builds, he gains one action per turn. In addition, the player can transport 
any or all resource tokens stored in a transporter to a single destination station  
anywhere on the surface for the price of one energy token. 

Why make reFininG more expensiVe?

You might wonder why we made refining ore cost more energy than purifying ice. The 
reason is that if a player has the efficient Ore mining technology, he can already produce 
two ore resources out of one. Players can potentially mine 40 ore in a two-player game. 
The Fast ice mining technology means that ice will be mined faster, but 20 is still the 
maximum in a two-player game. This means that for the game resource balance, it is bet-
ter to stimulate the duplication of ice rather than that of ore. 

Figure 9.13 illustrates the mechanics of these extra types of stations.

NOT E ideally, the 
purified ice and puri-
fied ore tokens should 
be similar in color to 
their original forms, for 
example, white for ice 
and gray for purified 
ice. in our playtests, 
we didn’t have more 
colors, so we tacked 
small Post-it notes to 
the original tokens to 
indicate their changed 
states.
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desiGn challenGe

With the extra types of stations, you might want to create a longer playing experience to 
let the player explore new strategies that these features offer. The purifier and refinery 
already might lengthen the playing time until the last resource is mined from the table. 
can you find out what number of initial ice and ore resources, placed at the beginning of 
the game, works best?

desiGn challenGe

The purifier and the refinery are quite similar. The only differences are that they work for 
different resources and have a small difference in energy cost. in games, it is generally 
a good idea to diversify the functions of the game elements. right now, the risk is that 
ice and ore will start to feel exactly the same. can you come up with alternative rules for 
either one of the stations that are different but balanced?

FIGURe 9.13
new station types
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These rule changes make two important changes to the basic economic structure:

n	 They remove the dynamic engine that was formed by gaining an action for every 
two stations that you build. It is replaced by a new dynamic engine that operates  
via transporters. The old system also produced a lot of feedback because players 
had to build many way stations to get to remote resources and produced a lot of 
static friction because they had to spend ore to build those stations. The new system 
reduces both the feedback and the friction.

n	 The role of energy has grown more important. Players can now use energy to 
duplicate resources. This creates a converter engine, as shown in Figure 9.14. Energy 
may be used to produce more ice (via purification), and ice may be used to create 
more energy. From this figure it should become clear that building purifiers make 
sense only when the player can convert ice into at least two energy tokens. Also, 
these changes create a much higher demand for energy, and it might be a good idea 
to increase its availability somehow.

more Features, more upkeep

The downside of the suggested rule changes is that the game becomes slower and more 
cumbersome to play. There is more information for the player to keep track of. Because 
this game is only a prototype, you shouldn’t worry about this too much, however. if you 
converted the prototype into a video game, the computer would be responsible for the 
bookkeeping, and if you used it to develop a board game, the physical and graphical 
design of the board would be used to help players keep track of the game.

Obstacles and events
One of the great features of Caesar III is the way that it uses obstacles and scripted 
events to create different experiences for every mission. You can use them to improve 
Lunar Colony as well. Here are some suggestions to create obstacles:

n	 A very simple obstacle can be created by making parts of the playing surface 
unavailable. Put anything that comes to hand (books, cups, small boxes) on the table 
before setting up the game. Resources and stations can be placed only on the table 

FIGURe 9.14
The new converter 

engine in Lunar 
Colony
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itself, not on anything else. With enough obstructions, this could lead to completely 
different play experiences.

n	 Another simple way to create obstacles is to use a few blank sheets of paper to 
indicate rough terrain. When setting up the game, the players must place all the 
resources on the rough terrain, but stations on rough terrain cannot grow in size.  
Or you might decide that stations on rough terrain cannot change into purifiers, 
refineries, or transporters.

n	 Stations themselves can also be used to create impediments. After all, in most 
economy-building games, players have to deal with all sorts of limitations caused  
by their own buildings. One example would be that no refinery or purifier can be 
built too close to mines. They must be built at least the short length of a playing 
card away from these stations.

Here are a few suggestions for events that you can add to Lunar Colony. Because it is 
inconvenient to add scripted events to a board game prototype, a number of these 
suggestions use random ways to create events. However, we designed them so that 
any event would affect all players (although not always equally). This helps make 
sure that luck doesn’t become too great a factor in the game.

n	 We can create random events by having players throw a die at the end of their 
turn. A roll of 5 means that the player can place three new ice tokens from the 
unused tokens not on the table. He must place each token on a different ice lode.  
A roll of 6 indicates that all players get the option to pay three energy tokens to  
score an extra point at the end of the game. (You will need to write this down when 
it occurs.)

n	 Instead of using a die to generate random events, use homemade cards with 
events written on them. At the end of his turn, a player draws a card to determine 
the random event and then discards it. When the deck is exhausted, shuffle the  
discard pile and use it again. Cards allow the designer far more control over the  
distribution of the events. If, in a deck of 12 cards, there are two cards that will  
add ice to the game, you are certain that event will happen twice every 12 turns. 

n	 You can also use cards to script a scenario. By placing the cards in a particular 
order, you can control exactly how and when what event is going to happen. This 
can be used to give players goals for the game. For example, if they know that after 
10 turns they can earn extra points for selling ore, they could prepare for it. It could 
even be used to create a solitaire version of the game, although in that case, you 
would need a designer to set up the starting situation and determine the order of 
the cards.

n	 Cards can also be used to give all players one or more secret objectives during 
the game. For example, they might score extra points if they end the game with 
five energy tokens, get bonus points for building a size 4 station, and so on. Secret 
objectives can spice up the game but work best if they include more mechanics that 
support direct interaction between players.
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desiGn challenGe

devise three different ways to add obstacles or events to Lunar Colony. Work out the rules 
and playtest the gameplay for at least one of them.

desiGn challenGe

create mechanics and an interesting scenario for a single-player version of Lunar Colony.

Additional economic Strategies
In economy-building games it is always a good idea to provide multiple viable 
economic strategies. We widened the economic options for Lunar Colony with the 
addition of purifiers and refineries. In this last section, we will discuss one more 
option that will also create more interaction between players: raiding.

Raiding is best implemented by using the attrition design pattern (see Appendix B), 
but in a form in which the opposition’s resources are stolen rather than destroyed. 
You must be careful that a new mechanism like this one doesn’t unbalance the 
game. If raiding is too effective, it will become a dominant strategy: The players will 
use raiding only, and the other mechanisms will become obsolete. If it is too weak, 
nobody will use it, and there was no point in including it at all.

In general, two design approaches can help you create a balanced experience:

n	 Make sure that the two strategies (in this case building versus raiding) are differ-
entiated in the risks and rewards they might bring. We have already seen this in the 
previous chapter when we discussed SimWar. In this case, it makes sense to at least 
increase the risk involved in raiding. 

n	 Don’t try to balance two strategies, but create three strategies in a rock-paper- 
scissors relationship. These relationships are more stable than a two-strategy balance, 
because even if one strategy appears to be better most of the time, players can start 
choosing the strategy that beats it more frequently. Rock-paper-scissors relationships 
are less affected by slight imbalances between the strategies.

In the case of Lunar Colony, we opt for the first design approach. We will make raid-
ing more risky. At the same time, we will make the raiding more effective for players 
who are falling behind. This way, it creates an additional negative feedback loop 
that will keep the game tight and fun. 
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Players gain the following possible actions during a turn:

n	 Build Raider. Pay one energy to build a raider in any station. Place the energy 
token on top of the station to represent the raider. 

n	 Raid. Raiders can be used to steal resources from another player, but only if they 
are in range. Raiders can target any enemy station within the length of the long side 
of a playing card. When raiding, the active player rolls a die. If the number is lower 
than or equal to the number of resources (ice and ore) that are currently stored in 
the target player’s station, the raid is successful, and the acting player can take one 
substance token from the target station and place it on the raider’s own station. The 
player then rolls the die again. If the number rolled is lower than or equal to the num-
ber of resources (ice and ore) on his own station, the raider is destroyed. A raider can 
be used only once per turn, but multiple raids can be launched from a single station 
on successive turns.

desiGn challenGe

Find out whether the rules for raiders work and have the intended effect.

desiGn challenGe

create mechanics that allow players to defend against raids.

Summary
We examined games that, rather than providing the player with an economy, 
permit her to build her own. These can be single-player games or multiplayer com-
petitive ones. A key quality of economy-building games is that they offer the player 
building blocks—often such things as buildings and roads—that let the player set up 
economic relationships of her own design. We examined two such games in some 
detail so that you could learn from their design: Caesar III, a single-player game, and 
Lunar Colony, a multiplayer game of our own. We showed how, with some very sim-
ple building blocks, Lunar Colony creates a “land rush” for resources. We illustrated 
how a designer could add some improvements for the game to make it richer and 
more exciting, and we suggested ways to create a sense of progression in the game 
using scripted events.

The next chapter delves further into the question of progression and shows how 
game mechanics interact with level design and storytelling.
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Exercises
1. Complete all design challenges in this chapter.

2. Create an automated model for a single-player version of Lunar Colony that can 
be used to collect statistical data and use it to tweak the balance of the game.

3. Create a paper prototype for an economy-building game of your own. Build a 
model for it in the Machinations Tool. Simulate the game in the tool, and play test 
and refine the game with other people (if it’s a multiplayer game). Keep track of the 
changes you make and why you made them.
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Integrating Level Design 
and Mechanics
In this chapter and the next, we shift our focus from purely emergent game mechanics 
to mechanics as a tool for progression design. We look at the ways that game levels 
organize their challenges into missions and how they interweave a story with the 
player’s progress. Although people often think of level design as creating spaces or 
using software level design tools, game mechanics play an equally important role in 
defining how a level provides challenges to the player.

In this chapter, we investigate how to integrate level design with the design of game 
mechanics. We look at different kinds of progress that take place in games and 
address how levels structure play. We also discuss ways that you can use levels to 
introduce game mechanics in such a way that players can get into the game easily. 

From Toys to Playgrounds
A game’s mechanics should provide players with enjoyable gameplay, and most 
games offer players a structured environment and an orderly progression of goals as 
part of the experience. Creating the environment and the goals is part of the level 
designer’s job. Level design also introduces the players to the game’s mechanics a 
little at a time. In this chapter, we will focus on the role that levels play in structur-
ing the gameplay experience. In the terminology of Kyle Gabbler (see the sidebar 
“Make the Toy First” in Chapter 1, “Designing Game Mechanics”), thus far we have 
been focusing on using mechanics to construct a toy. Now it is time to use that toy 
to create a playground.

Structuring Play
We generally think of toys as enablers for free-form play, in which players can set 
their own goals or play without any goals at all. Games come with a predefined goal 
that specifies exactly under what conditions you beat the game or your opponent; 
this is also called the game’s victory condition. Victory conditions can be very simple,  
such as to destroy all enemy ships or collect a certain number of points. Some goals 
are unachievable in practice: No matter how many aliens you destroy in Space Invaders, 
the game continues to throw fresh waves at you until you lose your last life and 
the game is over. In this case, the real goal of the game is not to defeat all the alien 
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invaders but to survive and score as many points as you can before the game is over. 
The high-score table that Space Invaders displays after each session supports this goal 
and serves as a reward if you do well enough to enter your own initials.

learninG From real play spaces

The word playground is not just a convenient metaphor. as a game designer, you can 
learn a lot by paying attention to various real-world spaces intended for play. For 
example, theme parks are laid out cleverly to immerse their visitors in a fantasy world 
yet still prevent them from getting lost. (This is the function of the castle in the middle of 
disneyland; its height makes it visible from almost anywhere in the park and helps visi-
tors orient themselves.) miniature golf courses have imaginative designs, too, increasing 
in difficulty over their 18 holes. The courses start out easy enough but soon introduce 
challenges such as bouncing off corners, navigating slopes, or going through tunnels. 
some miniature golf courses add unique and wildly imaginative features. designing 
miniature golf holes is a good exercise for anyone who wants to be a game designer.

Games of emergence typically establish simple goals such as collecting the most 
points or defeating enemy units. In these kinds of games it takes skill, strategy, and 
experience to play the game’s mechanisms and get the game into the state that the 
victory condition is met. This works well for short games in which the mechanics 
produce emergent gameplay but are not too complex. This way, players can develop 
their game-playing skills and strategies over multiple short sessions. For games of 
emergence, the exact definition of the goal can make a big difference (see the “Goals 
in Machinations Diagrams” sidebar).

playinG Vs. GaminG: paidia Vs. ludus

The French scholar roger caillois, writing in his book Man, Play, and Games (1958), was 
among the first to make a distinction between goal-oriented gameplay and free-form 
play (as well as other forms). he used Latin terms for the names of his different catego-
ries of play. caillois states that games can be classified on a continuum from paidia, 
where the focus is on unstructured playful activities, to ludus, where the focus is on 
structured goal-oriented behavior. You can think of these two poles as playing and 
gaming, respectively. Paidia is often associated with the way children play, while ludus
is often associated with more adultlike games or sports. Traditionally, games are found 
on the ludus end of the scale, but certain games, for example role-playing games, offer 
many opportunities for more free, paidia-like play at the same time. Ludus, or goal- 
oriented gaming, is not necessarily better than paidia. it is a major design challenge to 
offer both forms of play in one game and produce a harmonious result.
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Goals in machinations diaGrams

machinations diagrams use end condition elements to simulate goals in games. how 
you define these goals can have a dramatic effect on the gameplay. For example, the 
target number of energy points needed to win the harvester game determines the ideal 
number of harvesters to build. (We introduced the harvester game in the section “Use 
randomness to counter dominant strategies” in chapter 6, “common mechanics.”) if you 
were to change the goal of the harvester game from a target number of energy points to 
a target number of harvesters instead, it would create a different dynamic in which all 
the players try to build harvesters as fast as possible (which doesn’t necessarily consti-
tute better gameplay).

In games of progression, goals also tend to be simple: find the treasure, rescue 
Princess Peach (again), or defeat the evil wizard. However, in progression games, 
achieving the victory condition requires the player to achieve many subgoals first. 
Players progress from goal to goal until they can try to complete the final goal. 
Compared with games of emergence, performing the action necessary to win the 
game might not be all that difficult, but there are many more things the player must 
do before she can even attempt that final action.

As we explained in Chapter 2, “Emergence and Progression,” emergence and pro-
gression are not mutually exclusive categories. Many games have elements of both. 
The player’s experience benefits from game mechanics structures that create emer-
gent gameplay, but very long games also need progression features to create a sense 
of purpose for the player and variety in the gameplay.

Structuring Progress
Players can get a sense of progress in a game in a variety of ways. In the next few 
sections, we explore different kinds of progress.

PrOGress ThrOUGh cOmPLeTinG TasKs
As designers, we can define progress in a game in terms of the number of tasks the 
player has completed. This assumes that the game has a victory condition and that 
it is something a player can actually achieve. This type of progress is often repre-
sented as a percentage: “You have completed 75% of the game.” Many games also 
offer optional tasks that players don’t have to perform to win the game. In those 
cases, the percentage of progress can be relative to the total number of tasks avail-
able, but the victory condition is set at less than 100% or is defined in terms of 
specific tasks rather than numbers. For example, Grand Theft Auto III measures 
progress in terms of many optional stunts and challenges, and the game lets you 
continue to work on them even after you have nominally achieved victory. Many 
classic adventure games such as the Kings Quest or Leisure Suit Larry series measure 



ptg8274339

224 Game mechanics: advanced Game desiGn

progress in terms of a number of points earned by performing particular actions. 
Again, most of these games could be finished without scoring all the points, and 
players would replay them with a goal of completing the game with all possible points. 

In games in which progress comes through performing tasks, you must offer players 
enough variety to keep them engaged; you can’t simply string together a sequence 
of identical tasks. You must also pace them correctly and create a suitable difficulty 
curve to keep the player both interested and challenged.

the aesthetics oF shiFtinG perspectiVes

most people find sudden shifts in views or perspectives a pleasant and aesthetic experi-
ence. You might recognize the feeling from hiking through mountains. as you make your 
way up through a forested hillside, your view is quite limited. Trees prevent you from 
seeing far, and you are probably focused on a rocky trail. When you get closer to the 
top, the landscape suddenly opens up. Trees are replaced by open meadows, and all of 
a sudden you can see for miles around. For many, this sudden shift is one of the rewards 
for going hiking in the first place. Well-paced changes in gameplay and environment can 
have a similar result in games. it is one of the reasons it is always a good idea to have 
different styles of landscapes or backgrounds in different sections of your game. 

PrOGress as disTance TO TarGeT
In games of emergence, progress is more difficult to measure in terms of numbers of 
completed tasks, because the tasks in such games are seldom discrete subgoals on  
the way to the main goal. Yet, because these games often have a victory condition 
that is stated in numeric terms, we can measure completion on that basis rather 
than in terms of tasks. For example, in Caesar III (see the discussion in Chapter 9, 
“Building Economies”), the goal of a certain level might be to build a city’s popula-
tion up to a certain size. No specific sequence of actions leads to that target, but we 
can still tell players how close they are to the goal. However, in these cases, the com-
pletion percentage doesn’t always guarantee that the player will achieve the victory 
condition in a fixed amount of time. A player might have built a city that hosts 90% 
of the target population, but if she also ran out of building space or has no access to 
the food supplies needed to grow the city any further, she might still be a long way 
from obtaining the remaining 10%. 

A crucial difference between this type of progress toward goals through emergent 
gameplay and more classical progress through completing tasks is that the player 
can experience setbacks. In the Caesar III example, players might lose citizens and 
buildings to invading barbarians, thus increasing the distance between their current 
achievements and the target. By contrast, once a task is finished in an adventure 
game, it can never be undone; the player never loses the benefit of achievements 
already obtained. 
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Another difference is that progress toward completing tasks typically follows a 
predesigned trajectory that takes no account of the player’s level of skill. (Puzzle-
based adventure games normally have no difficulty settings the player can adjust.) 
Progress in emergent systems adapts to the player’s performance naturally—or it 
can if you set up your mechanics correctly. For example, you can use the escalating 
challenge and escalating complexity patterns (see Chapter 7, “Design Patterns,” and 
Appendix B) to adapt quickly to a player’s level of skill. In an emergent game, varia-
tion in the gameplay has to come from different phases that the game goes through 
as a natural part of its mechanics (see the section “The Shape of a Game of Chess” in 
Chapter 4, “Internal Economy”). You can use the slow cycle pattern (Chapter 7 and 
Appendix B) to cause gameplay phases to emerge. 

PrOGress as characTer GrOWTh
A third way you can measure progress is through the avatar character’s own growth 
in strength or abilities. Role-playing games typically use this type of progress, espe-
cially table-top role-playing games and massively multiplayer online role-playing 
games (MMORPGs) that lack a goal that ends the game. Progress in these games is 
measured in numeric character levels, which are obtained by collecting numeric 
experience points. This type of progress tends to be open-ended: there may be no 
limit to the level a character can achieve. It also has the potential to offer branch-
ing growth paths, if players have to choose between different ways to advance their 
characters, especially when these options are mutually exclusive. A good example of 
this type of development is found in Deus Ex. In this game, players can find aug-
mentation canisters that increase a character’s abilities. Each canister offers a choice 
among several cybernetic enhancements. Every choice is offered only once, and the 
players have to decide between options that support different playing styles. 

As with all types of progress, character development is used to structure gameplay. 
For example, a player character must have a particular score for a strength ability 
before being able to progress to certain areas. However, because the game design-
ers don’t have direct control over how the player chooses to develop a character, 
the game may need to support many different approaches to get to the same point 
in the game. In some cases, the game offers different possible endings based on the 
way the player character developed.

PrOGress as PLaYer GrOWTh
You can measure the player’s progress through the game in yet another way: 
through the player’s own growth in skill. Compared with role-playing games, the 
avatar characters in action-adventures such as The Legend of Zelda, Super Mario Bros.,
or Metroid Prime don’t progress much. They unlock new abilities and gain more life 
points over the course of play but possess nothing like the fine granularity offered 
by the character attributes in role-playing games. In action-adventure games, the 
game trains the player to use his avatar’s abilities through increasingly difficult and 
complex challenges. 
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In many action-adventure games, abilities unlock new areas for the player to 
explore, but often it is the player’s level of skill that determines whether he is able 
to reach a certain location in the game world. Use the environment to measure 
your player’s ability. Children do this all time in the real world, trying to walk on 
low walls, jump over fences, or set themselves challenges such as not stepping on 
cracks in the pavement. Many games use this learning instinct to great effect. When 
players see a collectable coin in an odd location in a platform game, most will 
immediately assume the designer intended it to be reachable and will try to find 
out how to use their avatar’s abilities and their own game-playing skills to get there. 
You’ll find that this instinctive and playful approach to the environment is a useful 
design tool for creating compelling game worlds. 

Focusing on Different Structures in Your Mechanics
Large games structure their gameplay into multiple distinct levels because their 
mechanics are simply to complex to throw at the player at once, especially in the 
early stages when the player doesn’t know the game well. By creating different lev-
els or areas in the game that focus on different mechanisms, the game breaks down 
its complex machinery into easier-to-manage segments. At the same time, it creates 
more variety in the gameplay and can require the player to explore different strate-
gies for playing a particular game. 

In some games, each level focuses on a different aspect of the game mechanics. This 
requires a mechanics core that is large enough to include multiple structures that 
generate their own gameplay—enough gameplay to carry a level. Early levels in the 
game highlight different subsets of the mechanics, while later levels might include 
all the mechanics. Figure 10.1 illustrates this. It shows how different subsets of the 
mechanics from the basic Lunar Colony game economy (Chapter 9) can be used to 
create different levels. Because the core set of mechanisms of Lunar Colony is not 
very large, each of these different versions will probably feel like a new introduction 
to the game’s mechanics.

StarCraft II uses this technique to great effect. As with most real-time strategy games, 
the economy of StarCraft II is extensive and includes resource harvesting, base build-
ing, and technology researching to create an effective strike force. The first level 
doesn’t involve any building. It simply lets you learn to manage your combat units 
and focuses on movement and combat. The second level introduces the base and 
resource-harvesting mechanics, but only a handful of buildings are available at this 
time. Only after completing particular levels do more buildings and unit upgrade 
options become available. After the first three levels, players get to choose which 
level they would like to do next, allowing them to pursue specific goals.
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A big difference between the original StarCraft and StarCraft II is that many missions 
in the later game introduce mission-specific mechanics (we already mentioned and 
discussed a few of these effects in Chapter 2). For example, in the level “The Devil’s 
Playground,” minerals can be harvested only from low areas that are periodically 
flooded with hot lava (Figure 2.6). This requires players to move their units to safety 
from time to time. In effect, it adds a powerful slow cycle pattern to the internal 
economy of StarCraft II. A different slow cycle appears in the “Outbreak” level, when 
mutants attack the players base en masse during the night and the player goes out 
to destroy infested structures during the day (Figure 10.2). Other levels force players 
to keep moving their bases across the map to protect or attack periodic convoys or 
to quickly capture specific targets.

FIGURe 10.1 
different subsets of the 
core mechanics cre-
ate different levels for 

Lunar Colony.
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StarCraft II is a great example of how to build varying levels from the same core of 
game mechanics. By changing goals, disabling certain mechanisms, or adding a 
novel mechanism that works in a level only, you can get a lot of gameplay out of 
the same core. These changes to the circumstances of individual levels will require 
players to explore a wider variety of strategies—they can’t use the same approach to 
every level.

Storytelling
As we discussed in Chapter 2, games of progression often tell stories as part of their 
entertainment. Storytelling helps to structure levels and guide players. Stories give 
players a motive for achieving goals that otherwise would remain abstract or mean-
ingless. Killing orcs in a fantasy game obtains emotional significance when the 
game’s story frames it as an act of vengeance or self-defense. 

Stories in games work best when the mechanics, the level structure, and the dramatic  
arc interconnect seamlessly. The typical dungeon structure in The Legend of Zelda 
works because it creates synergy between story, level layout, and game mechanics. 
Link nearly always fights a mini-boss halfway through the level to obtain a special 
weapon that he’ll need to defeat the dungeon’s end boss. This structure gives the 
player ample opportunity to explore the new mechanics associated with the special 
weapon. It creates variety by introducing the new mechanics partway through the 

FIGURe 10.2 
during the night cycle 
in the “Outbreak” 

level of StarCraft II, 
you must defend your 
base against hordes of 
mutants.
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dungeon and enables progression by unlocking previously unreachable areas.  
In addition, it uses the familiar dramatic arc associated with adventure stories where 
the hero fights his way through a series of tough challenges to gain that vital edge 
and come out victorious. 

Most storytelling in video games is either linear (the story is the same every time  
the player plays the game) or branching (the player makes decisions that influence 
the direction of the plot line in a large-scale way). Emergent storytelling, in which  
a story emerges entirely from the game’s mechanics and the player’s actions, has 
long been a holy grail of game designers. It has proven to be a particularly intrac-
table problem because it requires designers to characterize dramatic situations and 
human behavior in numeric and algorithmic terms. This is far more difficult than 
creating the economy of even a very complex game world like that of Civilization.

Because this book concentrates on game economies, we don’t have room to discuss 
the various efforts that people have made toward emergent storytelling. For the 
moment, it remains a research topic for academics and is seldom attempted in  
commercial video games.

Missions and Game Spaces
When we design levels, we usually do so working from one of two perspectives on 
the task. One perspective focuses on the challenges that players must overcome (or 
tasks they must perform) to complete the level. The other perspective focuses on  
the layout of the game world—the simulated space in which it takes place. 

In Chapter 9 of Fundamentals of Game Design, Ernest Adams explains that challenges  
in video games form a hierarchy, with groups of short-duration challenges combining 
to form larger challenges. The lowest level challenges are called atomic challenges 
because they cannot be further subdivided. For example, successfully landing a 
punch on an opponent in a boxing game is an atomic challenge, while winning the 
fight is a mission made up of many such challenges, and it may be necessary to win 
many fights to finish the game. From the challenges perspective on level design, we 
concentrate on defining this hierarchy.

Viewing level design from the second perspective, that of layout, we define the 
architecture of the level itself. In Chapter 12 of Fundamentals of Game Design, Adams 
describes several common spatial layouts found across different games. Some games, 
such as side-scrolling games or Half-Life, provide nearly linear levels. Track-based car 
racing games use ring-shaped layouts. Spaces in first-person shooter games designed 
for multiplayer combat are often quite sophisticated, with open and protected areas, 
doors to guard, high vantage points, and so on.

Each of these two different perspectives has its own strengths when considering 
different design issues. For example, it’s easier to think about pacing and difficulty 
curves when you view the level as a series of tasks or challenges. But storytelling and 
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atmosphere are better understood in terms of the spatial layout of the level, at least 
if the story concerns a journey. 

In our analyses of game levels in this book, we find it important to keep the two 
perspectives separate when trying to discuss them (although of course in the final 
product they must work together to form a harmonious whole). We refer to the  
mission of a level when we focus on the sequence of tasks or challenges in a level, 
and we use the term game space when we focus on the spatial layout of a level. 

Separating these two aspects of level design helps us see how they relate to emergent 
gameplay. In some games, the mission of the level maps directly to its space (see 
the “The Dungeon Is the Mission?” sidebar). However, this is not always the case. 
Games can reuse the same space for different missions, as in the Grand Theft Auto 
games. They demonstrate that the same space can accommodate many missions if 
the designer makes imaginative use of it. This saves the developers time and money, 
because they don’t have to create a new space for every level in the game. It has 
gameplay benefits as well. For example, players can use previous knowledge of the 
space to their advantage, adding to their player’s sense of control with each mission 
that reuses the space.

What iF the dunGeon is the mission?

sometimes it can be useful to design a mission and a game space as one. in hack-and-
slash table-top role-playing games, the dungeon is a good way to quickly create a level 
(or story) that is easy to manage for the dungeon master. all she has to do is draw a maze 
on a piece of graph paper, litter it with monsters, and put some rewarding treasure at the 
end. she can even rely on random encounters to spice up things as needed. in this case, 
the dungeon map almost resembles a flow chart for the level’s mission; the structure of 
the game space dominates the level, and the mission (if it has any independent structure 
at all) has little impact. although this works well for a particular style of play (the Diablo
games demonstrate that there is a viable niche for that type of gameplay), it is an approach 
to level design that does not work for all types of games. as a designer, you have little 
control over the pacing of the game, and the action tends to get repetitive fast. if you 
seek to offer a more complex gameplay arc, you would do well to consider the mission 
separately from the game space and create quality structures for each. 

A level’s mission and game space do depend on each other, even though we discuss 
them separately. A space must accommodate the mission, while the mission should 
ideally guide the player in her exploration of the space. In the next chapter, we’ll 
explore in more detail how progression mechanisms, and lock and key mechanisms 
in particular, serve to connect missions and spaces. 

When designing a level, it often makes sense to start by designing its mission rather 
than its space. A mission is easier to write down and organize; its structure is usu-
ally quite simple. However, this isn’t an absolute rule. There is a risk to beginning 
with the mission: Designers sometimes create a very linear space to fit the mission, 
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leaving out any opportunities for the player to explore or enjoy the space for its 
own sake. For some levels, it might be more interesting to start with designing an 
engaging space (such as a castle, space station, or famous nonfictional location) and 
design a mission to fit that space. 

Mapping Mechanics to Missions
Game mechanics interact with missions and game spaces differently. We’ll deal with 
missions first and address game spaces in “Mapping Mechanics to Game Spaces” later  
in this chapter. The interaction with missions is often straightforward. The game 
mechanics dictate what actions are available in the game, and these actions suggest  
tasks that can be used to build missions. For example, if the game allows the player to  
collect flowers, a simple mission could be to collect ten flowers. In this section, we’ll 
explore some variations on the flower-collecting mission to make it more enjoyable.

addinG chaLLenGes TO imPrOve The exPerience
When mapping mechanics to missions, it is important to be sure that the tasks are 
not too trivial or repetitive. If collecting a flower only requires the player to navigate 
to a location and press a button, it offers no challenge. You can use Machinations 
diagrams to document the challenges that a mission offers and to help you think 
of design strategies that avoid trivial and repetitive tasks. The mission to collect ten 
flowers might look like Figure 10.3. From the diagram, you can see that the mission 
is both trivial and repetitive. The way to complete this game is simply to click the 
source ten times to win. There is no choice, and the game involves no player skill. 
(Remember, at this point we’re discussing missions independently of the space they 
take place in.)

The mission can be improved by adding enemies that the player must avoid. The 
new mechanics are represented by Figure 10.4. In this case, the player needs to 
choose whether to focus on avoiding enemies or collecting flowers (if you built the 
diagram yourself, make sure you put the diagram in synchronous time mode so that 
the player can activate each element only once every second). The effect of avoiding 
is randomized a little: The player removes one to three threat tokens when avoiding. 
This randomness models variation in player skill. 

FIGURe 10.3 
repetitive and trivial 
mechanics create poor 
missions.

FIGURe 10.4 
adding enemies to  
create choice
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Playing this diagram is already tricky, mostly because of its high pace (see the side-
bar “Speed vs. Cognitive Effort”). However, once you find the right balance, it is not 
too difficult. We can further change this by adding an interaction between the two 
mechanisms. In Figure 10.5, we added a mechanism that increases the rate at which 
threat is produced for every flower the player collects. This means that the player 
must spend more and more time avoiding the enemies while progressing toward the 
goal. This creates a nice difficulty curve for the mission. It starts out relatively easy 
but gets more difficult quickly. 

speed Vs. coGnitiVe eFFort

Figures 10.4 and 10.5 are good illustrations of the balance between speed and cognitive 
effort described by chris crawford in his book the Art of Computer Game Design (1984). 
The tasks of collecting and avoiding are not very difficult in themselves, and even finding 
the right balance between the two does not involve too much strategic thinking. however, 
because the diagram moves at a high speed, finding the right balance fast enough is 
actually quite challenging. crawford suggests that speed and cognitive effort should be 
balanced. Games that require a lot of cognitive effort should run at a low pace (or even 
be turn based), while games that require little cognitive effort should run at a fast pace 
to make them interesting. You can get an appreciation for this balance by changing the 
speed of these diagrams or setting them to a turn-based time mode.

desiGn challenGe

Figure 10.5 implements the escalating challenge pattern and comes very close to imple-
menting the escalating complexity pattern (see appendix B for detailed descriptions of 
these patterns). can you find a way to change the diagram so that it implements escalat-
ing complexity? how would you incorporate the new mechanics into the game’s fiction—
its imaginary world of flowers and enemies?

FIGURe 10.5 
interaction between 
progress and difficulty
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addinG sUBTasKs
Another way you can make the mechanics for the flower-collecting mission more 
interesting is by adding subtasks that must be completed to achieve the goal. In 
Figure 10.6, the goal is still the same: collect ten flowers. However, in this exam-
ple, the player must perform three subtasks to unlock all the flowers to be able to 
achieve the goal. In this case, every subtask is represented as a simple gate but can 
be replaced by a more complex mechanism. For example, you can use the enemy-
avoiding mechanism to create a subtask. To create variation in the game, it is best to 
create subtasks that offer the player different gameplay experiences, perhaps because 
they have unique mechanics or because they emphasize different structures in the 
general mechanics of the game.

aVoid creatinG too many indiVidual mechanisms

When creating missions that rely on a number of subtasks that the player must com-
plete, you have to be careful not to create too many individual mechanisms for all those 
subtasks. This creates a lot of work, because all those mechanisms have to be designed 
and tested. it also introduces a risk: all those different subtasks must be fun. Generally 
speaking, players perceive your level as just as fun as the weakest mechanism in the  
mission (people remember negative experiences more vividly than they do positive 
ones). To avoid having to design too many individual mechanisms, create a solid core 
of mechanics for your game first, and then zoom in on certain parts of that structure 
for individual tasks. This is very similar to our advice about using a different focus for 
each level, as we discussed in the section “Focusing on different structures in Your 
mechanics” earlier in this chapter.

FIGURe 10.6 
Performing subtasks 
necessary to collect all 
the flowers
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Many games that use subtasks do not make all the tasks available at once. They  
create dependencies among the tasks. We can easily add dependencies to the flower 
collection example (Figure 10.7). The advantage of these dependencies is that they 
allow the designer to control the pacing of the tasks and create a nice difficulty 
curve by making the more difficult tasks dependent on the easier ones. Sometimes, 
this leads to completely linear missions, in which the order of all the subtasks is 
fixed. You shouldn’t always choose this approach, however, because players appre-
ciate some freedom of action. If your game has a fixed sequence of subtasks, you 
should at least make sure that the actions required to complete a subtask allow some 
options—otherwise, the gameplay amounts to checking off boxes. When evaluat-
ing the quality of your mission design, you should always ask yourself how many 
options are available to the player at a time. More is generally better than fewer, as 
long as you don’t overwhelm the player with options and no data about how to 
choose one. 

linear missions in open Game spaces

if a mission is linear, that doesn’t mean the game space must also be linear. many 
adventure games, especially those that rely heavily on a long sequence of locks and 
keys, have one sequence of tasks that must be completed to beat the game; they have a 
linear mission. But this mission can be set in a level in which the player must run back 
and forth a lot—through a castle, for example. This is called backtracking and can be 
frustrating if used too often. if you have a mission that is very linear, simply creating an 
open game space to give it more variety is a poor strategy. Usually it is better to redesign 
the mission to create a less linear experience. Give the player good reasons to explore 
the castle through your mission, rather than forcing them to run through the same space 
again and again.

FIGURe 10.7 
dependencies among 
subtasks
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exPLOrinG advanced TechniqUes: OPTiOnaL and mUTUaLLY
excLUsive TasKs
In this book we cannot go into too much detail about the fine art of creating mis-
sions and game spaces. However, we do encourage you to experiment with the way 
you order the tasks and subtasks in a mission. Here we offer two advanced tech-
niques to make missions less linear (but be warned that it also makes designing 
them harder): optional tasks and mutually exclusive tasks. 

If you give the player an entirely optional task, be sure to think about the rewards 
that performing the task brings. Does the reward have an effect on the game 
mechanics? (For example, it might give the player a more powerful weapon.) Or 
is the reward just some extra eye-candy or badge of honor? Optional tasks that do 
affect the gameplay make the game richer, but you have to be careful that the impact 
is not so great that the task actually becomes a requirement to finish the game. 

Many games create alternative sequences of tasks to achieve a mission goal. (For 
example, players might sneak past a guard and steal a key, or they might fight or bribe 
the guard to the same effect.) When you create alternatives like this, you can make 
certain tasks mutually exclusive. If the player tries to bribe the guard, it becomes 
impossible to sneak past him (he is aware the player is there), and if the player tries 
to sneak past him, bribing him no longer is an option (the guard’s suspicions are 
now aroused). If you set up mutually exclusive tasks, you have to be careful not 
to create a situation in which the game is no longer solvable. In this example, the 
option to fight the guard serves as a backup strategy that is always available.

Mapping Mechanics to Game Spaces
Machinations diagrams can be used to represent game spaces. To explore that idea 
further, we start with a diagram representing a trivial game where the objective is to 
make your way from a starting point to finish (Figure 10.8). A series of pools repre-
sent different locations in the game, and a single resource representing the player 
can be moved between these locations simply by clicking them. In this case, the 
player can move in only one direction. (Remember that pools pull by default. To 
move the player you must click an empty pool to pull him in.)

You can use this type of diagram to represent more open or maze like structures. For 
example, Figure 10.9 represents a space for a simple version of the flower-collecting 
game discussed in the previous section. The player is represented as a blue resource 
element, while the flowers are red ones. The presence of the player at a certain loca-
tion makes it possible to transfer the flower to the player’s inventory by clicking an 
adjacent gate. Acquiring five flowers unlocks the place the player needs to reach to win.

FIGURe 10.8 
Using machinations 
to represent a simple, 
linear game space
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In this case, the presence of the player in a certain location unlocks particular 
actions. This is a common use of space in a game and works equally well with one 
resource to represent a single-player character or multiple resources to represent a 
number of units under the player’s control. In fact, we can take into account the 
location of resources in a real-time strategy game space by allowing production units 
to be moved across the map. Figure 10.10 represents the mechanics of mineral har-
vesting in the level “The Devil’s Playground” in StarCraft II, including the periodic 
destruction of all SCV units in low-lying areas. Note that the distances between 
the pools in the diagram do not indicate the physical distance to the resources on 
the map. Rather, the lowered effect of SCV units on the production rate for the 
resources on the right represents the real distance to the base.

You can use the player’s location in the game to activate certain mechanisms, and 
you can also use it the other way around to use the state of the mechanics to make 
certain locations accessible. Figure 10.9 illustrates this idea. The goal location is 
activated only when the player has collected five or more flowers. Mechanisms that 
control the accessibility of certain locations in the game space are typically lock-
and-key mechanisms. In its simplest form, a lock-and-key mechanism depends on one 
binary state: whether or not the player has acquired the correct key. Figure 10.11
adds such a lock-and-key mechanism to the flower-collecting game.

FIGURe 10.9 
a simple space for the 
flower-collecting game
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FIGURe 10.10 
resource harvesting 
on several locations in 

StarCraft II

FIGURe 10.11 
a key mechanism 
(green) unlocks access 
to extra flowers.
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can you use machinations as a leVel desiGn tool?

The machinations framework was not set up to explore level design in much detail.  
as you can see from the examples, it works better with simple representations of game 
spaces, consisting of a handful of pools to represent locations. This is particularly suitable 
for point-and-click adventure games, but you will end up duplicating many mechanics 
if you are making a more detailed level design. moving units around the map is poorly 
supported. still, it can be done, and using machinations can be a good way to explore 
and experiment with different structures for game levels. The fact that machinations 
forces you to focus on the abstract level structure allows you to try out and implement 
ideas much faster than most prototyping techniques would allow, and it makes the inter-
actions among the game space, its mission, and its game mechanics visible.

learning to Play
Part of the level designer’s job is to train the player in the required gameplay skills 
necessary to complete the game. Nowadays, players don’t want to read manuals 
to play a game; they expect to learn the mechanics as a natural part of playing the 
game. This is especially true of casual gamers playing games online or on mobile 
devices. This means that you must structure your levels in such a way that they 
introduce the mechanics to the players in an incremental, comprehensible pro-
gression. In this section, we will discuss two slightly different but compatible 
approaches to teaching the mechanics while the player plays the game.

Skill Atoms
In an article entitled “The Chemistry of Game Design” published on the Gamasutra
website, designer Daniel Cook analyzed the way that players learn skills to play 
games (2007). He broke his hypothetical game into multiple skill atoms. Each atom 
constitutes a step in the learning process and consists of four events:

1. Action. This is the action the player performs, such as pressing a button or  
moving a mouse cursor.

2. Simulation. The game responds by applying mechanics and changing its state.

3. Feedback. This is the way the game communicates its state change via output 
devices. (Note that this is not positive or negative feedback within the mechanics 
but information “fed back” to the player.)

4. Modeling. The player then updates her mental model of the game. 
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Cook gives an example of these steps in the skill atom that governs jumping in 
Super Mario Bros.:

1. Action. The player presses the A button.

2. Simulation. The game moves the player character within its internal model of 
the world by applying a jumping force and gravity.

3. Feedback. The player character moves, its animation changes, and the game 
plays a jumping sound.

4. Modeling. The player learns that pressing A allows her to jump.

Skill atoms can depend on previously learned skills. Continuing the Super Mario
Bros. example, the player needs to learn how to jump before she can learn that she 
can jump onto platforms or that jumping into a certain block will reveal hidden 
objects. Linked skill atoms form chains and trees of related skills that can be repre-
sented as graphs. For example, a small part of the skill tree for Super Mario Bros. is 
depicted in Figure 10.12. 

Two important characteristics of a skill tree are its relative width and depth. If a skill 
tree is wide, the player must learn many new skills independently of one another. 
If a skill tree is deep, it has long chains of skills that depend on each other. In gen-
eral, it is better to have skill trees that are relatively deep instead of relatively wide, 
at least to teach the skills required early in the game. The reason is that the player 
can pick up secondary skills (skills that build on other skills in the game) compara-
tively easily as an addition to something she already knows, whereas primary skills 
(skills at the beginning of the chain) must be learned explicitly without the benefit 
of any prior experience. For example, when encountering a new and unfamiliar type 
of game, the player has two ways of finding out what the primary skills are: She can 
look for in-game instructions, or she can simply try random buttons or other avail-
able input devices. When she has learned a few primary skills, she will use them to 
play the game and will very likely either deduce combinations that work as second-
ary skills or stumble on those combinations by accident. However, if she missed a 
primary skill (for example, she never pressed the button to shoot), she might never 
realize that shooting was an option and miss out on an entire branch of the skill tree. 

The skill atoms work very well with dexterity-based action games in which each skill 
atom maps to mastering the controls to play the game. However, it can be applied 
just as easily to more strategic games whose challenges don’t depend on mastery of 
the controls. For example, in a turn-based strategy game, skill atoms might include 
the player understanding that a cavalry unit is very effective at fighting units of 
archers. The steps to learn this skill are similar to any action-based skill atom. The 
player needs to perform an action (order cavalry to attack archers), and the game 
runs a simulation (decides how effective the attack is) and provides feedback (ani-
mations and visual effects to indicate the effectiveness of the attack) that allows the 
player to update her mental model (attacking archers with cavalry is effective).
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“easy to learn but a liFetime to master”

When we’re teaching a player to play a game, we use tutorials and other methods to 
teach some skills explicitly. Other skills, however, the player must learn on her own 
through experience. For example, the number of explicit skills in chess is very small—a 
few rules about the moves, plus castling, en passant capture, and pawn promotion. But 
the number of skills the player must learn implicitly in chess is enormous. designers 
characterize this quality of a game with the phrase “easy to learn but a lifetime to 
master.” Games that have this quality also tend to have skill trees that are deep instead 
of wide. Games that depend on only a few primary skills don’t have to teach players a lot 
to get them going. at the same time, the long chains of skills learned through experience 
might take a lifetime to master.

FIGURe 10.12 
a partial skill tree for 

Super Mario Bros.
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hidden inFormation in Games

certain games depend on hiding information from the players. This seems to contradict 
the idea that it is important to provide the player with information about changes to the 
state of the mechanics. however, there is a subtle difference between being clear about 
the game’s state as a whole and being clear about when the state changes. To learn how 
a game’s mechanics work, the players need to know when changes occur. a game can
hide its exact state from the player. 

many card games hide the exact state of the game while making it quite clear that things 
are changing: You can see how many cards other players pick up or discard. By observing 
those changes, you may be able to deduce something about the game’s state: the actual 
distribution of the cards and whether your hand is better than your opponent’s.

Martial Arts learning Principles
Our first approach to learning in games was to define skill atoms and organize them 
into skill trees. Our second approach draws on the methods used in karate (and vari-
ous other Japanese martial arts) training. Students must train in four different stages 
to complete every “level” (properly called belts or, in Japanese, dan). These stages, 
which build upon one another, are as follows:

n	 Kihon (fundamentals). The student learns to perform an individual technique. 
The focus is on getting the technique right.

n	 Kihon-kata. The student repeats the new technique endlessly to master it and 
perform it without thinking. If you never received martial arts training, you might 
recognize this stage from the endless chores the main character in the movie Karate 
Kid had to go through (“wax on, wax off”).

n	 Kata (form). The student learns how to combine different techniques in a fixed, 
choreographed sequence of moves called a kata.

n	 Kumite (sparring). To prove his mastery, the student fights his master in a free 
fight. For the first few levels, the master will use only a subset of simple and predict-
able moves, but as the student advances, the master will draw from a wider range of 
attacks and use them less predictably.

You might recognize these stages in many games. For example, you can apply these 
learning stages to Super Mario Bros. and Crash Bandicoot as well:

n	 Kihon. The player gets to practice a new move (such as jump) in a fairly safe 
environment. Once she has learned to jump, she is able to move on.

n	 Kihon-kata. The move is then repeated several times: The player needs to perform 
a series of jumps, often with increasing difficulty. Before long, the player doesn’t 
need to think about how to perform a jump or what button to push; she simply 
jumps when she needs to jump.
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n	 Kata. During the level the player encounters a series of challenges that require 
combinations of moves to overcome. For example, the player needs to jump and 
shoot at the same time. At this stage, the movement patterns of enemies tend to 
be deterministic and predictable. Once the player finds the right combination of 
moves, that combination will work every time (during this stage).

n	 Kumite. The learning process is completed with a boss encounter. Boss encoun-
ters require the player to use combinations of moves in a free fight. Especially 
toward the end of the game, boss behavior gets more and more difficult to predict, 
requiring a greater and greater mastery of the moves by the player.

Games that use these learning principles often integrate them closely with their 
mission structure. Every stage of learning becomes a subtask, or a series of subtasks, 
that the player must complete to proceed. This also means that these games put more 
emphasis on testing the abilities of the player. To advance past the kihon stage, the 
player must prove that she is able to jump. These tests are easy to set up: Simply create 
a challenge that the player cannot avoid and that requires her to use the right skill. 
During the initial stages, it’s best to keep the levels simple and safe to build player 
confidence. During later stages you can increase the risk. These learning principles 
work best with fairly linear missions, or at least missions in which you have made 
sure that the player can face only tasks from later stages after she has completed the 
tasks of the early stages.

FIGURe 10.13 structure of the “Forest Temple” mission
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You can find this type of learning structure in the Forest Temple level in The Legend 
of Zelda: Twilight Princess. (We also discussed this level in Chapter 2.) In the Forest 
Temple level, Link has to overcome many challenges. In the early stages of the 
level, he encounters bomblings, small creatures that explode a few seconds after 
Link picks them up. His first task (kihon) with the bombling is to use it to destroy a 
large carnivorous plant that prevents him from reaching the next dungeon room. 
After that, he needs to repeat similar moves a couple of times (kihon-kata) to blast 
walls. When Link gains the Gale Boomerang, he learns to use the boomerang to flip 
special switches and pick up distant items over a series of simple tests (kihon and 
kihon-kata). These tests require that the player demonstrate that he is able to direct 
the boomerang toward a particular sequence of targets. Near the end of the level, 
Link must use the boomerang to pick up distant bomblings and deliver them to 
another carnivorous plant (kata). This prepares Link to use the same technique to 
fight and defeat the level boss (kumite). Figure 10.13 illustrates the structure of the 
mission and the locations of the learning stages within it. In this figure, the boxes 
represent tasks, and arrows indicate dependencies between tasks: A task is available 
only when the player has completed all the tasks that lead into it. Note that it omits 
many details to concentrate on the mission’s structure. (You can see a map of the 
spatial layout of the level in Figure 2.3.)
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You can find a similar structure in the second dungeon of the game, the Goron 
Mines. To gain access to this dungeon, Link must acquire the Iron Boots, an item 
that he can equip to make himself very heavy, and must demonstrate how to use 
it (kihon). The dungeon trains the player in the various applications of this item: to 
sink to the bottom of bodies of water, to walk on vertical or upside-down stretches 
of magnetic rock, and to fight heavy and strong creatures (kihon-kata). Halfway 
through the dungeon, Link acquires the hero’s bow and has to use it to open several 
pathways by shooting at targets (kihon, kihon-kata). During this stage, he engages in 
several fights in which the player must switch in and out of his boots quickly and 
combine it with archery and sword fighting (kata). Finally, the player must combine 
all three skills to defeat the level boss (kumite). In fact, this structure is repeated for 
all dungeons in Twilight Princess. Figure 10.14 shows an overview of the mecha-
nisms that are introduced during each dungeon and each intermission between 
dungeons. It shows that the game slowly introduces new mechanisms over its entire 
course and focuses on a different combination of mechanisms for each level. It is 
a very fine example of using levels to structure a smooth learning curve and create 
prolonged and varied gameplay. You can use such a chart to plan the learning stages 
of your own games as well as to analyze published games.

Summary
In this chapter, we examined the ways that game mechanics interact with level 
design. We noted four different ways of measuring progress through a game: 
through completed tasks, through advancement toward a numerical goal, through 
character growth, and through growth in the player’s own abilities. We showed 
how it is possible to use a subset of all your core mechanics to create a specific level, 
using our Lunar Colony game as an example. In the section “Missions and Game 
Spaces,” we introduced an important distinction between the structure of a level’s 
mission, or sequence of tasks to be performed, and its physical layout. You can use 
Machinations diagrams to help you design both. The chapter ended with a discus-
sion of the ways in which players learn to play games and how cleverly designed 
games always prepare a player well for what is to come. The Legend of Zelda: Twilight 
Princess serves as an ideal example.

In the next chapter, we will study progression mechanisms in games, especially the 
lock-and-key mechanism, in more detail.
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FIGURe 10.14 The introduction and focus of mechanisms in The Legend of Zelda: The Twilight Princess
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Exercises
1. Review the Machination diagrams you made for earlier designs. Look for a diagram 
that allows you to focus on different structures that can serve as a starting point for 
different levels. Create a sequence of at least three different levels of ascending dif-
ficulty, simply by leaving out certain parts and changing the end conditions.

2. Examine either of the following games: Knytt Stories (http://nifflas.ni2.se/?page= 
Knytt+Stories) or Robot Wants Kitty (www.maxgames.com/play/robot-wants-kitty.html). 
Analyze how these games have structured their levels and how they train the players 
in playing the game. What are the differences between the structure of these games’ 
mission and game space? What are the skills the player learns while playing, and 
how are these skills linked and combined?

www.maxgames.com/play/robot-wants-kitty.html
http://nifflas.ni2.se/?page=Knytt+Stories
http://nifflas.ni2.se/?page=Knytt+Stories
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progression 
Mechanisms
In Chapter 10, “Integrating Level Design and Mechanics,” we focused on the struc-
tural features of levels on a large scale. In this chapter, we examine the mechanisms 
that drive progression and that can be used to structure levels. We don’t restrict our-
selves to the traditional mechanisms found in games of progression, but we look for 
ways to apply what we’ve learned from studying emergent gameplay to the mecha-
nisms of progression.

Our goal is to find more emergent mechanisms of progression than commercial video  
games typically use, and we consider two different approaches. In the first half of  
this chapter, we investigate traditional lock-and-key mechanisms and identify 
ways to make them more dynamic. In the second half of the chapter, we abandon 
the conventional view of progression in terms of the player character’s movement 
through a level and toward a goal location, and instead we frame the notion of  
progression in more abstract terms: changing the state of the game toward a goal 
state. This perspective allows us to go beyond the common design strategies found 
in contemporary games and speculate about emergent progression, an approach 
that might bridge the gap between Jesper Juul’s games of progression and games  
of emergence.

lock-and-key Mechanisms
Games that feature many levels often rely on lock-and-key mechanisms to control  
the player’s progress through each level. In some cases, these mechanisms are 
described as actual locks and keys. For example, in Doom, the player can find a red, 
yellow, and blue keycard in most levels to open red, yellow, and blue doors. In The 
Legend of Zelda, Link typically uses small keys to open doors and needs to find the 
master key to unlock the door that leads the final boss of that level. However, we 
use the term lock-and-key mechanism to refer to any mechanism that controls access 
to parts of a level. In the original Adventure, a snake blocked the player’s path at one 
point (it was the lock), and it could be driven away only by releasing a bird from a 
cage (the key). The Legend of Zelda frequently uses other things that the player needs 
to collect as keys: the monkeys, bomblings, and the boomerang in the Forest Temple 
are all good examples. 

247
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Despite the addition, the solution to the level in Figure 11.2 is still always the same. 
Any player playing it must perform the same tasks in the same order. To create more 
variation and provide the player with a choice to make, many games use multiple 
keys to unlock a single door (Figure 11.3). The monkeys in the Forest Temple offer a 
good example of that construction.

FIGURe 11.1
mapping a linear 
mission to a linear 
game space. note that 
acquiring the sword 
will help defeat the big 
boss at the end.

FIGURe 11.2
Using locks and  
keys to map a linear 
mission to a nonlinear 
game space

T IP in our illustrations  
of game spaces in this 
chapter, the green 
objects are enemies, 
and the large one next 
to a treasure chest 
is a boss enemy. The 
player’s character is 
not visible but enters 
the level through the 
arched door from the 
outside. The colors of 
the keys match the  
colors of the locks  
they open.

FIGURe 11.3
Using multiple keys to 
unlock a single door

General design wisdom dictates that it is usually preferable to have the player find 
the lock before he finds the key. There are three reasons for this: 

n	 If the player generally encounters the keys before the locks, he develops the habit 
of collecting everything that he encounters without discrimination, just in case it 
might be a key that will be needed later. This makes for simplistic gameplay. When 
the player encounters a lock, rather than going to look for a suitable key, he tries 
everything in his inventory. Older adventure games tended to exhibit this weakness.

n	 When a lock (obstacle) doesn’t look like a real lock and its key (solution) doesn’t 
look like a real key, it is easier for the player to recognize the key if he has seen the 
lock first. Upon finding the key, the player usually can often guess its function and 
will actively formulate the intention to return to the lock. This makes the player’s 
role more active than simply reacting to whatever task the game throws at him. It is 
also more likely to make the player feel smart because he figured it out himself.

n	 When players can negotiate obstacles they were unable to get past earlier, they 
experience progress and accomplishment. There may have been obstacles he could 
not overcome, but he now has the power to do so. (You have to be careful not to 
frustrate your player too much, however; young children and casual players are less 
tolerant of obstructions than more experienced ones.)

It is not always possible to guarantee that the player will find the lock before the 
key; it depends on the topology of the space that he’s exploring. If the world is 
largely open and the player has the freedom to roam at will, then he may well find 
the key before the lock, although he may not recognize it as a key. We discuss lock-
and-key mechanisms in the context of game spaces in the next section.

Mapping Missions to Game Spaces
Lock-and-key mechanisms help the game designer to map missions onto spaces. 
(Remember that mission in this context refers to the collection of tasks required to 
complete a level.) As we saw in the previous chapter, game missions can be quite 
linear, especially in levels in which the player still is learning the basic mechanics 
of the game. At best, a mission allows a few alternative tasks for the player to work 
on. Again, the structure of the mission of the Forest Temple level (Figure 10.13) is a 
good example. In the most extreme case, a mission might be completely linear (Figure 
11.1), but mapping such a mission to a physically linear game space is seldom the 
best option. Lock-and-key mechanisms allow a different way to map a linear mis-
sion to a nonlinear game space (Figure 11.2): It allows the designer to move the 
lock forward (closer to the level’s entry point). In theory, it also allows the designer 
to move the lock backward, but because, as we already argued, it is better to have 
the lock before the key, moving the lock forward makes the most sense. 
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Despite the addition, the solution to the level in Figure 11.2 is still always the same. 
Any player playing it must perform the same tasks in the same order. To create more 
variation and provide the player with a choice to make, many games use multiple 
keys to unlock a single door (Figure 11.3). The monkeys in the Forest Temple offer a 
good example of that construction.

FIGURe 11.1
mapping a linear 
mission to a linear 
game space. note that 
acquiring the sword 
will help defeat the big 
boss at the end.

FIGURe 11.2
Using locks and  
keys to map a linear 
mission to a nonlinear 
game space

T IP in our illustrations  
of game spaces in this 
chapter, the green 
objects are enemies, 
and the large one next 
to a treasure chest 
is a boss enemy. The 
player’s character is 
not visible but enters 
the level through the 
arched door from the 
outside. The colors of 
the keys match the  
colors of the locks  
they open.

FIGURe 11.3
Using multiple keys to 
unlock a single door
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We can also do the converse and give the player a single key to unlock multiple 
doors. The boomerang in the Forest Temple serves this purpose. Unfortunately, it 
cannot be used to reorder the game space directly, because this potentially cuts the 
level short and creates a problem for the player (Figure 11.4). The trick to create 
multiple locks for a single key, and still place those locks before the key, is to add 
extra lock-and-key mechanisms (Figure 11.5) or to mirror the multiple locks mecha-
nism with a multiple keys mechanism (Figure 11.6).

FIGURe 11.4
Poor use of a single 
key that opens multiple 
locks: The player might 
encounter the boss 
before she finds the 
sword.

FIGURe 11.5
combining multiple 
locks for a single 
key with an addi-
tional lock-and-key 
mechanism
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Using Abilities as Keys
Lock-and-key mechanisms are more common in games than actual locks and keys; 
most lock-and-key mechanisms are characterized as something else, such as switches 
or a permanent power-up that allows the player to smash down particular doors.  
It is a common game design strategy to control a player’s progress by granting her  
permanent abilities that act as keys. For example, in a platform game, gaining 
the ability to double jump allows the player to cross wider gaps and reach higher 
platforms than before. Devising clever lock-and-key mechanisms that are closely 
integrated to the core gameplay is an important aspect of the level designer’s job. 
Because gameplay is created by mechanics, you must invent locks and keys that are 
based upon, or interact with, the game’s core mechanics. For example, if the game 
is about jumping, special jumping abilities should function as keys. If it is a game 
about sword fighting, you should look for ways to create keys for special sword 
fighting abilities, and so on.

One difficulty with using permanent abilities as keys is that it creates a single key 
used for multiple locks. As we explained in the previous section, that type of con-
struction isn’t always easy to use. If you want the player to encounter a number 
of locks before finding the key, you have to be careful that you don’t accidentally 
create a lot of unintended shortcuts. At the same time, the player needs to be able 
to clearly see that an area is locked (rather than just difficult to access). One way 
to create many locks that the player passes on her way to the key is to have these 
locks lead to bonus tasks and rewards that do not affect the game too much, but just 
enough to feel rewarding to exploration-minded players. 

FIGURe 11.6
multiple locks for a 
single key with mul-
tiple keys for a single 
lock
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Creating key mechanisms from player abilities, rather than from game world objects, 
also has advantages. You can combine these actions in interesting ways with each 
other and with other elements in the game. For example, a double jump might be 
the key to cross a wide gap, or to avoid creatures that are too tall to jump over with 
a single jump. Being able to identify possible combinations of mechanisms in the 
game that you can use to create locks and keys to structure your levels is a very use-
ful skill. It allows you to get the most out of a game’s mechanics and lets you to 
create varied gameplay efficiently. 

desiGn challenGe

how many different ways can you think of to use a sword as a key in a lock-and-key 
mechanism? (don’t design a level; just think of alternative uses for swords.)

lock-and-Key Machinations
In Chapter 6, “Common Mechanisms,” we showed you how you can use 
Machinations diagrams to represent lock-and-key mechanisms: A key mechanism 
often is a simple state change that unlocks new areas in the game space. Its essential 
structure is represented by Figure 11.7.

This structure has a weakness, however. The game can be in only one of two states: 
Either the player has the key or he doesn’t have it. There is little room for dynamic 
behavior. The Machinations diagram reveals that simplicity. The mechanism is built 
from two pools and based on a resource (the key) that can move in only one direc-
tion (into the inventory). One consequence of this is that the player can never put 
the key down. Many games implement this system deliberately so that the player 
can never accidentally leave a critical key behind—The Longest Journey is a well-
known example. 

Even if we look at typical variations found on locks and keys, the mechanics do not 
get much more complex or dynamic. A few examples include nested locks, such as 
when a nonplayer character requires the player to undertake several quests before 
providing a key; multiple keys for a single lock (Figure 11.8); or keys that are con-
sumed when they open a door (such as the mysteriously disappearing small keys in 

FIGURe 11.7
a simple lock-and-key 
mechanism (blue) to 
control progression 
through a space (black)
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The Legend of Zelda, as in Figure 11.9). Note that in the case of a consumable key,  
the player might be forced to choose between two directions because she cannot  
unlock both doors with a single key. In the case of Figure 11.9, the “level” will 
always be solvable because behind lock B, there is another key, and once a door is 
unlocked, the player cannot “spend” a key to unlock it again.

If we want to involve player skill, rather than simply the presence or absence of  
a player ability, we need a different mechanism. In games like Fallout 3 and The  
Elder Scrolls: Skyrim, the player uses lockpicks to try to open locks. There is a chance 
the lockpick will break, and the player will fail. In these games, the chance of failure 
depends on the skills of the player and the attributes of his character. Lockpicks  
are a consumable resource, and if it is vital that the player get past a certain lock in 
this manner, the game must ensure that she has an unlimited source of lockpicks. 
Figure 11.10 represents this type of lock-and-key mechanism.

FIGURe 11.8
a lock requiring mul-
tiple keys to open

FIGURe 11.9
Keys that are con-
sumed upon use

FIGURe 11.10
skill-based lock-and-
key mechanism
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In The Legend of Zelda, the bow and arrow can be used to open doors by shooting 
distant switches. The mechanism (Figure 11.11) combines a skill-based lock with 
a more traditional lock-and-key mechanism: The player must have the bow and at 
least one arrow. Using the lock consumes arrows (and has a chance of failing). As 
with the lockpicks in the previous example, the game must include some sort of 
mechanism to supply the player with enough arrows to prevent creating a situation 
in which he cannot proceed. 

This type of lock does not display dynamic behavior; it contains no feedback loops. 
Even more elaborate game mechanics for locks and keys, such as the bombling crea-
tures in Zelda (Figure 11.12), create more interesting gameplay, but they typically 
do not create the dynamic behavior we are looking for.

Throughout this book, we have stressed the importance of feedback loops in the 
creation of emergent gameplay. You might have noticed that so far, the lock-and-
key mechanisms discussed in this section include little feedback. The activators in 
Figure 11.9 create some feedback, as does the trigger to spawn a new bombling in 
Figure 11.12. However, in both cases this feedback is very local and does not affect 
the lock-and-key mechanics much. 

FIGURe 11.11
The bow and arrow 

in Zelda combines a 
regular key (the bow) 
and a consumable 
skill key (the arrows) 
mechanism.

FIGURe 11.12
Bombling keys. Try this 
in the machinations 
tool.
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cataloGinG lock-and-key mechanics

The machinations diagrams for different lock-and-key mechanisms help identify the 
subtle differences among them and the issues you might encounter using the mecha-
nisms in a game. There are many more lock-and-key mechanisms than we can document 
here. as a designer, creating these little diagrams and studying their mechanics will help 
you to build a repertoire of design lore. having a large catalog of lock-and-key mechan-
ics will be very useful when you have trouble coming up with the right mechanism for 
your game: simply go through the mechanisms you found in other games and find inter-
esting opportunities to apply to your own game. a catalog of mechanisms is the game 
designer’s equivalent of a collection of reference art that many professional artists use to 
get inspiration from or to explore new ideas.

Dynamic locks and Keys
To create lock-and-key mechanisms that involve more feedback, start by treating 
the keys as a resource that can be produced and consumed, rather than as a simple 
item that either is or is not in the player’s inventory. For example, Figure 11.13 rep-
resents a mechanism in which the player needs to harvest ten keys before she can 
open the lock. (In this case, harvesting is an automatic action that happens when 
the player is in the right location.) Feedback takes place through the application of  
dynamic friction on the number of keys the player has collected. The more keys that 
are harvested, the quicker the keys are drained. In this case, we might think of the 
key as a kind of magical energy the player needs to unlock a door. This mechanism 
makes it somewhat harder to estimate how many keys need to be harvested to get  
past the lock. Obviously, this gets even more difficult as the distance between the 
location where keys can be harvested and the lock increases. Unfortunately, the mech-
anism is not very interesting in itself: It boils down to harvesting enough keys and 
then dashing for the door. There is little strategy involved. But we can improve on it.

FIGURe 11.13
a simple feedback 
mechanism for a lock-
and-key mechanism
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We can create a more interesting mechanism by applying the dynamic engine pattern 
to the mechanism. Figure 11.14 represents such a mechanism. This time, the player 
needs to collect 25 or more keys to proceed, but now she has the option to invest 5 
keys to increase the harvest rate by 0.5. However, this mechanism is probably too 
simple. It is not very difficult to find out what number of upgrades is ideal for this 
scenario (which also depends on the speed with which the player can move between 
the different locations in the game). Worse, a disadvantage of this mechanism is 
that it is optional: The player can reach the goal without upgrading at all. These 
weaknesses should not come as a surprise: As we argued in Chapter 6, one feedback 
loop alone is generally not enough to create an interesting dynamic mechanism. 

The emergence of a dominant strategy in the form of an ideal number of upgrades is 
the direct result of the dynamic engine pattern. We have seen similar patterns already 
in our discussions of Monopoly and the Harvester game. Games that mostly rely on 
a dynamic engine as their sole, or single most important, feedback loop, as is the 
case with Monopoly, usually include random factors to make it more interesting 
and unpredictable. That would be an option, but it is not the direction we want to 
explore here.

To create a more interesting lock-and-key mechanism, we can complement the 
dynamic engine pattern by some form of dynamic friction (Figure 11.15). In this case, 
enemies spawn that will steal and consume the harvested keys from the player. 
Now the player has to balance between three tasks: harvesting, upgrading, and 
fighting the enemies, whose numbers increase over time unless the player destroys 
them. This is no longer a trivial challenge; beating the interactive version of the 
Machinations diagram is already fairly tough and less straightforward than it looks. 
Simply harvesting will probably not bring the player very far, and although it is pos-
sible to achieve the goal by switching between harvesting and fighting, this requires 
the player to maintain a delicate rhythm of switching between the two for a long 
time; it is very hard to accomplish. The player needs to find a balance between the 
three actions to reach the goal. When the fighting is made skill-based, then the 
most effective balance can actually vary depending on the individual player’s level 
of skill. 

FIGURe 11.14
applying the dynamic 
engine pattern to the 
mechanism

NOT E if this idea of 
dynamically generated 
keys seems strange to 
you, remember that 
we don’t necessar-
ily mean physical keys 
for physical locks in 
physical doors. many 
construction and 
management simula-
tions require players 
to master part of their 
economy to unlock 
new buildings or other 
features. a role-playing 
game could use such 
a system as the key to 
solving a quest: The 
blacksmith will reward 
you if you can take over 
his business and make 
it profitable.
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The lock-and-key mechanism we have now leads to a gameplay that is very similar  
to the gameplay of a real-time strategy game: Players must balance between harvest-
ing raw materials, fighting, and upgrading their units to keep the enemies under 
control and make the final push to complete the game. The combination of a dynamic 
engine and some form of dynamic friction is the heart of most real-time strategy 
games. For a multiplayer game, you might replace dynamic friction with attrition
(another form of friction) and add an arms race pattern to introduce more base-
building options.

desiGn challenGe

can you design a lock-and-key mechanism that is built around the multiple feedback  
pattern? Or any other design pattern that we haven’t applied to a lock-and-key  
mechanism yet?

Structuring levels Around Dynamic locks and Keys
Level design that is built on relatively simple and nondynamic lock-and-key 
mechanisms has to string many of these mechanics together. The big advantage 
of dynamic lock-and-key mechanisms is that one or two of them can serve as the 
backbone of a level; you don’t need as many mechanisms to create a compelling 
and lasting gameplay experience. You can already notice this from playing around 
with the diagram in Figure 11.15. Simply getting past its single lock will take a lot 
of actions and considerably more time than most simple locks. More importantly, 
the choice of actions available offers more freedom and requires more strategy from 
the player to solve than a nondynamic lock-and-key mechanism that simply hides 

FIGURe 11.15
a multiple feedback 
mechanism for locks 
and keys
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many keys for a single lock in a maze, even though the actions that the player per-
forms (navigating through a maze) are almost the same. 

You don’t always have to create the dynamic lock-and-key mechanism for each 
single level to structure a level around it. If the game you are working on already has 
dynamic core mechanics, it makes sense to look at those mechanics first. Perhaps 
there are already structures in them that would function perfectly as a dynamic 
lock-and-key mechanism. If there are, it allows you to create levels efficiently, because 
you don’t have to add extra mechanics to create locks and keys (assuming you want 
them), and you can keep the game focused on the core mechanics. In other cases, a 
few simple additions or changes do the trick. In those cases, you could add different 
mechanics to the core to create different levels. When done right, this creates games 
with variations in their gameplay and in which each level has its own unique feel.

Another advantage of using dynamic lock-and-key mechanisms to control pro-
gression, rather than simple static ones, is that you can change the difficulty of 
the challenge by adjusting the numbers in the mechanism. One of the weaknesses 
of simple lock-and-key adventure games is that it’s almost impossible to offer the 
player a choice of difficulty levels because the relationships in the game are purely 
binary: Either the player has the key or he doesn’t. A dynamic system is adjustable.

Structuring levels around a single lock-and-key mechanism is more common 
than you might think. It works even for lock-and-key mechanisms that are not so 
dynamic at all. For example, the level structure of dungeons in The Legend of Zelda is 
built around the weapon you win from the midlevel mini-boss and the way it func-
tions as a key to several doors. Most levels simply add one mechanism that requires 
the player to collect multiple keys. Of course, lock-and-key mechanisms are not the 
only form of challenge found in these levels, but they do play an important role in 
creating the right structure of progression for the level. This combination of mental 
and physical challenges creates the excellent gameplay experience of being a heroic 
adventurer.

Emergent Progression
In many games of progression, the goal of the game is to reach a certain location 
(and perhaps to perform an action there). Progress in these games is mapped to the 
game space; the game is a journey. Figure 11.16 represents this type of progress in 
its simplest form. The game informs the player of his progress, either directly with 
a measure of distance traveled or indirectly by exposing the player to novel and 
interesting locations. In designing a game that maps progress to space, lock-and-
key mechanisms are the most important tool you have to structure the gameplay 
experience. 
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However, there are more ways to look at progress in games. In the previous chapter, 
we described progress in terms of how close the player is to reaching a victory con-
dition. In this case, progress is not measured as space traversed but in terms of some 
aspect of the game’s state. It can be convenient to think about how many actions 
the player needs to perform or how much time he needs to bring about the target 
state. Figure 11.17 represents this structure in its most elementary form.

Framing progress as a relationship to a particular game state allows us to think about 
creating dynamic forms of progress from new angles.

board Games rely on emerGent proGression  
more Frequently

Board games seem to use emergent mechanisms of progression more frequently than 
video games do. Board games cannot rely on many rules or vast predesigned levels  
the way video games can. They are restricted to the materials that fit into a single  
box and cannot burden their players with a large set of rules to govern many different 
individual cases. however, a number of board games aim to entertain their players for 
long periods of time, sometimes even days! modern board games use a mixed bag of 
techniques to achieve these results. They often come with boards that are built from 
randomized tiles to create different starting positions (for example The Settlers of Catan, 
shown in Figure 11.19), and they include rules that divide the game into different phases 
with different gameplay in each (for example, Power Grid). however, the best, but also 
the most difficult, way to create progression in such games is to set them up so that dif-
ferent gameplay phases emerge naturally from the mechanics rather than from arbitrary 
rules. an example of this effect, one that we discussed in more detail in chapter 4, 
“internal economy,” is chess: chess goes through distinct opening, middle, and endgame 
phases. designing games that exhibit that type of emergent behavior is something of 
a holy grail for almost every game designer and has the potential to turn your games 
into modern classics. There is no reason why video games shouldn’t aim for that type of 
gameplay as well.

FIGURe 11.16
Progress as a journey

FIGURe 11.17
Progress as an aspect 
of the game’s state
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Progress as a Resource
To measure progress in terms of the game’s state rather than in terms of the play-
er’s location, it’s best to treat progress as a resource in its own right. This offers you 
many more opportunities to create interactions between the player’s progress and 
other mechanics in the game. Experience points and character levels are classic 
examples from role-playing games; they’re numbers that not only tell the player 
how he’s doing but also can be used for internal computations. (Many RPGs include 
weapons that are available only to characters above a certain level, for example.)

You can let players trade their progress points away for some long-term benefit 
that will help them progress faster. If the object of a game is to be the first to earn 
a stated amount of money, smart players might invest their money (thus appar-
ently losing progress) in schemes that will earn new money faster. You can also use 
a player’s progress to vary the difficulty of the game’s challenges as she plays. This is 
exactly the way Space Invaders works: The speed at which the aliens move in a given 
wave is proportional to the number the player has already shot. The more the player 
kills, the faster they move and the harder they become to kill. Their speed also 
increases from wave to wave. 

Games that measure progress in terms of travel through space have to rely on  
careful placement and ordering of the game’s challenges to create an appropriate  
difficulty curve, and it will usually be the same every time the player plays the 
game. Determining progress from the state of the game allows the mechanics to 
adjust the difficulty automatically and to offer a different experience on each play-
through. You can also use the slow cycle design pattern to create oscillating degrees 
of difficulty throughout the level.

proGress as a resource Vs. dynamic locks and keys

Treating progress as a resource is similar to, but more powerful than, using a dynamic 
lock-and-key mechanism. With a lock-and-key mechanism, even a dynamic one, progress 
toward unlocking that one lock is like optimizing a single resource. however, the way 
that a lock-and-key mechanism affects the gameplay always depends on the mission 
structure (when the player encounters the lock and what it unlocks) and its state is 
binary—either the player has access to the goal or not. Treating progress as a resource 
can have more subtle effects on the game and allow a wider range of effects than simple 
wins or losses. For example, in a game in which the objective is to score a number of 
points before the game ends, you can win by barely making that target or win by a large 
margin. These differences are subtle but make progress as a resource more versatile. 

NOT E most role-
playing games don’t 
let their players trade 
or otherwise manipu-
late experience points, 
but experience points 
are absolutely central 
to the game, figuring 
in all sorts of calcula-
tions—they are simply a 
resource that the player 
cannot directly modify. 
if the idea of progress 
as a resource seems 
strange, think of it in 
terms of experience 
points. (depending on 
the game, they need 
not be visible to the 
player.)
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storytellinG: When proGress as a Journey  
still makes sense

We have made a number of arguments for representing progress in your games as 
a function of the state of the game, and perhaps even as an independent, abstract 
resource. it offers you more power and flexibility as a designer and enables you to give 
the player more varied, less predictable experiences and, sometimes, more freedom to 
choose her own goals. There is one game design situation, however, in which charac-
terizing progress as a journey is still useful: when the game tells a story and the player 
really cares about the quality of that story.

Good storylike experiences possess certain qualities that games do not always offer:

• The events of a story must hang together as a coherent whole; they must not feel 
arbitrary, mechanistic, or random. The protagonist may experience reversals of fortune, 
but they must be dramatic reversals; they should not feel as if they were caused by a 
purely mechanical process. in contrast, game events are often produced by simple luck or 
chaotic factors.

• A story must not be repetitious. Every event in a good story should be unique and 
created by the author for a specific purpose. even in stories that are about repetitive ac-
tivities, authors describe the activity only once or twice and then jump ahead to a point 
at which something new happens. Games, however, and especially simulations, often 
include many repetitive events in the game world and repetitive actions by the player.

• Stories must not move backward in time (except for rare, author-planned flash-
backs). They must maintain novelty and momentum. a story’s world should never simply 
return to a state it was in before; even if the protagonist has failed to achieve a goal, he 
has learned something by his failure. While a game obviously cannot go backward in 
real-world time, it can return to a state identical to one it was in earlier, which effectively 
feels like going back to an earlier moment in game-world time.

• Stories are about characters, and characters in good stories must behave in psy-
chologically credible ways. The nonplayer characters in most games are simple automata 
whose behavior is not believable.

This serves to illustrate an important point: dramatic tension (“what will happen next?”) 
and gameplay tension (“am i going to succeed?”) are not the same thing, even if they ap-
pear superficially similar. dramatic tension dies if a story exhibits any of the weaknesses 
mentioned earlier.

continues on next page
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storytellinG: When proGress as a Journey  
still makes sense continued

To make a video game feel storylike, the vast majority of storytelling games map the 
game’s progress and the story onto a space. The space is deliberately constructed to 
provide novelty, and the player seldom spends very long in one location, which keeps 
the story moving forward. such games often lock doors behind the player too, to prevent 
her from returning to an earlier point in the story. Finally, the tasks in storytelling games 
often consist of unique puzzles to avoid repetitiveness. adventure games typically have 
no internal economy at all, only simple lock-and-key mechanics.

however, this does not mean that our suggestion about progress as a resource can 
never be used in games with a story. some game stories are merely framing narratives 
between levels and so cannot be harmed by the mechanics. Other games integrate their 
plots more tightly with the gameplay but don’t expect the players to take them too seri-
ously. action-adventure games such as our oft-cited Legend of Zelda series usually tell 
a story to provide motivation and context for the player’s actions, but the players are 
mostly interested in gameplay tension, not dramatic tension. even if they appreciate the 
context that the story provides for the gameplay, literary quality is not the point.

emergent storytelling, which we mentioned briefly in chapter 10, is a research field 
that seeks to resolve the inconsistency between traditional gameplay experiences and 
traditional story experiences. a hypothetical emergent storytelling game would use 
gamelike emergent mechanics to create gameplay and an emergent progression system 
to generate dramatically interesting plot events without an author’s involvement. at the 
same time, it would somehow guarantee that the experience feels properly storylike, 
without repetition, randomness, reversals in time, or noncredible characters. some ef-
forts to create such a system have used artificial intelligence to search through possible 
future events in a plot the way a chess program searches for possible future moves in a 
chess game. instead of trying to checkmate the king, the search algorithm tries to find 
an enjoyable plot. To date, no one has succeeded in building a full-game-sized emergent 
storytelling system. all the efforts thus far have produced only small prototypes.

Producing Progress Indirectly
We can take the idea of progress as a resource one step further by having the play-
ers produce progress indirectly and measure progress over multiple resources. In this 
case, there isn’t one particular action that produces progress. Instead, the process to 
produce progress involves multiple steps and multiple resources.
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This approach is common in open-ended simulation games. For example, in the 
space trading classic Elite (Figure 11.18), players fly space ships to trade across a 
vast galaxy. It inspired many space trading games such as the Privateer series and the 
MMO Eve Online. Most of the money the player earns will be invested back into her 
ship. A better ship allows the player to travel farther and into more dangerous, but 
also more lucrative, quadrants of space. The player’s progress in the game is measured  
by the quality and capacity of her ship—a collection of concrete resources. Although 
the open-ended nature of the game permits players to choose their own goals, 
acquiring a powerful space ship and amassing wealth seems to be a common target 
for most players. 

In Elite, it is also possible to lose progress: The player’s ship may be attacked and 
destroyed, the player can fire precious missiles to fight off pirates, or the player 
might use an expensive one-time intergalactic hyperdrive. Losing progress in this 
way is fairly uncommon in games in which progress is represented as a journey, but 
it’s entirely normal in simulation games.

Another good example can be found in the board game The Settlers of Catan (Figure 
11.19). The objective of this game is to score ten points. Points are scored for build-
ing villages, upgrading villages to cities, building the longest road, playing the most 
knights, or being lucky in the purchase of development cards. All these point-scoring 
mechanics are interrelated. The player can’t simply build a new village and get a 
point any time he wants; he must build roads to suitable locations and acquire the 
right set of resources. Building a village isn’t the endpoint of the process, either. It 
increases the player’s chance to gain new resources, while upgrading a village to a 
city increases its resource output. 

FIGURe 11.18
Elite
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Figure 11.20 represents most of the economy of The Settlers of Catan, though cer-
tain mechanics, such as the extra points scored by building the longest road and 
by playing the most knights, have been omitted. Figure 11.20 is turn-based and 
uses color-coding to distinguish among the five resources in the game. The produc-
tion mechanism reflects the fact that both cities and villages generate a chance to 
produce a resource every turn, while every city increases the chance that the pro-
duction rate is doubled. We advise you to play around with the online version of 
the diagram to fully grasp the way the game’s internal economy works.

The economy of The Settlers of Catan is dominated by a dynamic engine that is also 
subjected to a engine building pattern and that interacts with a trade pattern. The 
game manages to avoid the typical gameplay signature associated with a dynamic 
engine by creating several options to invest and by having all these investments add 
to the game’s progress. The simple accumulation of resources is not the point of the 
game. Another side effect of using an indirect measure of progress is that it’s not 
trivial for players to accurately read the state of the game. Although it’s fairly easy to 
see how many cities, villages, and resources each player has, because of the indirect 
way that points are computed, it’s hard to guess who is actually closest to winning, 
especially because the number of available building sites is limited. A player might 
need just one extra village to score the extra point, but if all building locations have 
been taken by other players, it will be impossible. The player will need many ore 
and wheat resources to build a city, and those resources might not be easy to come 

FIGURe 11.19
The Settlers of Catan
with the Seafarers 
extension.

Photo courtesy of alexandre 
duret-Lutz under a creative 
commons (cc BY-sa 2.0) 
attribution license.
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by. So, even though he seems to be close to victory, he might be far from reaching 
it. Also, the nature (but not the number) of each player’s trade goods is hidden, and 
the dynamic engine relies on a random mechanism, which further complicates try-
ing to assess who’s ahead. By comparison, it’s obvious in Monopoly, because all the 
players’ possessions are in plain view.

Because The Settlers of Catan measures progress indirectly, it is possible to win in 
more than one way. Players might go for many villages and cities or, alternatively, 
bet on getting the right development cards. The first option is a fairly safe choice 
but requires many resources, while the cards become a good option when the player 
has fewer resources; it represents something of a high-risk, high-reward strategy.

The Sims also measures indirect progress over many different resources. The player 
takes control of a number of sims: simulated people who live in something that is 
best described as a virtual dollhouse (Figure 11.21). The player’s success is measured 
in terms of the material goods (furniture and features of the house) that the player 
accumulates for his sims but also by the advancement of the sims’ professional 
careers. The Sims is a time-management game in which the player must use the lim-
ited time available to perform all the activities necessary to keep them happy and 
healthy. By taking good care of his sims, they will find jobs. If they make it to work 
on time and in good health and good spirits, they will advance their careers. Better 
jobs means they will bring home more money that the player can spend on items 
to entertain the sims and to make their daily routine run more efficiently. Although 
the game does not state that the goal is to guide the sims toward material and pro-
fessional success, it is implicit in the mechanics, and many players play it that way.

FIGURe 11.20
The economy of The 
Settlers of Catan

NOT E many people 
have criticized The Sims 
for its relentlessly mate-
rialistic approach. Your 
sims have no spiritual 
life and seem not to be 
able to derive happi-
ness from anything but 
extravagant furnish-
ings. a close reading 
of the tongue-in-cheek 
descriptions of the 
furniture in the game 
shows that the devel-
opers were perfectly 
well aware of what they 
were doing. The game 
is a satire.
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emergent Progress and Gameplay Phases
One of the jobs of traditional, nonemergent level design is to create varied, well-
paced gameplay. When progress is measured by movement through space, the level 
designer’s ability to craft that space gives him a lot of control over this aspect of the 
game. But when progress is an emergent property of the dynamic system formed by 
the game mechanics, this type of direct control over the gameplay becomes impos-
sible. However, that is not to say that games with emergent progression cannot have 
varied and well-paced gameplay. It only means that pacing and variation need to be 
created differently. 

In games of emergence, variation and pacing have to come from different phases 
that the game goes through. In this case, a gameplay phase is a period of time in 
which the dynamic behavior of the game follows a certain pattern. When a sig-
nificant shift in the dynamic behavior occurs, the game progresses to a new phase. 
For example, in a typical real-time-strategy game, the initial phase is dominated by 
resource harvesting and base building. The player quickly accumulates resources 
and invests in defensive buildings and units. At a certain point, the player’s behav-
ior will change: He will start building an offensive force to explore the map. During 
this phase, the focus is more on capturing strategic points on the map and perhaps 
on securing access to future resources. Once the player has accumulated enough 
resources and has found the location of the enemy base, he will probably launch a 
massive attack to try to overcome his opponent. 

Figure 11.22 maps these phases to distinct patterns in the resources and production 
rate of the player. The chart shows that during each phase the changes to the state 
of the game follow a particular pattern that is relatively stable. During the building 

FIGURe 11.21
The Sims 3 in a mode 
showing the furnish-
ings and elements of 
the economy in the 
overlay at the bottom
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phase, the player spends his resources fast, while his production rate grows quickly. 
During the exploration phase his resources accumulate because his focus is on a dif-
ferent aspect of the game. During the offensive phase, the number of resources go 
up and down as the player switches between building and launching attack waves. 

These three phases do not have to occur in the game, and when they do occur, they 
might occur in a different order. The rushing strategy (see the section “Balancing 
SimWar” in Chapter 8, “Simulating and Balancing Games”) partly depends on 
executing a very short building phase and then skipping the exploration phase 
and going on the offensive immediately. There are also other possible phases. For 
example, a level that requires that the player capture and use resources spread 
around the landscape might have consolidation phases that are mixed in between 
different exploration phases. If there are multiple enemy bases, the first offensive 
phase is probably followed by a similar consolidation phase. Games that emphasize 
technology tree mechanics probably have a research phase, a period during which 
neither offensive activity nor construction takes place, but players invest resources 
to upgrade their units and production buildings.

phase transitions and complexity theory

shifts between multiple stable states in dynamic systems are an important research 
topic in the science of complexity. For example, congestion in traffic is often studied 
in the same terms. There are two main phases of the system, normal flow and traffic 
jams, with some intermediate states. researchers hope to learn what triggers the shifts 
between these phases. Phase shifts in traffic flow seem to be somewhat analogous to the 
phase transition between solids, fluids, and gasses in chemistry. For example, when you 
gradually heat water, nothing much happens until you reach the boiling point, when it 
suddenly changes into a gas. something similar happens with roads. if you increase the 
“traffic pressure” by adding more cars, the flow and average speed will be normal for a 
while, until it suddenly drops and the road is jammed. shifting back to a noncongested 
state might require decreasing the traffic pressure far below the point where the jam 
started in the first place. in many complex systems, you see a similar asymmetry in the 
changes required to go from one state to another. if this asymmetry is large, the phases 
tend to be more stable; if the asymmetry is small, the system can oscillate between the 
phases more easily.

FIGURe 11.22
charting phases in an 
rTs game
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Composing Gameplay Phases
When you are designing levels for a game that has a number of these emergent 
gameplay phases, your job is to compose a desired gameplay experience from them. 
Suppose that, in our real-time strategy game, your design goal for a particular level 
is to emphasize the first building phase. You can achieve this by harassing the 
player early on with small groups of enemies that attack frequently. This forces the 
player to maintain a delicate balance between increasing production and building 
up defenses, and it slows down the former considerably. The effect will be that the 
building phase will probably be much longer. By creating a map in which resources 
are relatively scarce and scattered, the player is more likely to go through several 
exploration and consolidation phases.

scriptinG Vs. emerGence

When you are composing the gameplay phases for a game or a level, you can try to 
have all the different phases emerge naturally from playing the game. however, in 
many cases, it is more effective to force a few changes through deterministic or dynamic 
scripts. For example, in many levels of the single-player campaign of StarCraft (and many 
other rTs games), the game designers planned specific attack waves to be launched 
against the player by the ai. some of these events simply occur at a fixed time, while oth-
ers are triggered when the player reaches particular points on the map. even when you 
are aiming for dynamic, emergent gameplay, don’t be afraid to mix in some more direct 
forms of progression in this way. When done subtly, you create a highly dynamic game or 
level that offers great variation and has a high replay value.

It often requires a major event to initiate a shift between gameplay phases. While a 
game is in a particular phase, it is in balance, and the player probably settles into a  
certain rhythm of play. We have identified several design patterns that are commonly 
used to create significant events that can cause the game to shift to a new phase. 

n	 Slow cycle. In the previous chapter, we discussed the slow cycle pattern in 
StarCraft II to shift the game between distinct defensive and offensive phases. In 
general, a slow cycle is effective but also a little lacking in subtlety, especially when 
the player has little impact on the slow cycle mechanism. (According to legend, 
King Canute demonstrated the limits of monarchical power by showing that he 
could not hold back the tide, a classic slow cycle.) On the other hand, the slow cycle
pattern tends not to produce events as dramatic as those we describe next. 

n	 Static friction/static engines. When static friction is infrequent but has a high 
impact, it can cause phase shifts. Caesar III contains a good example (see Chapter 9, 
“Building Economies”), in which periodic invaders and periodic demands for trade 
goods by the emperor create high-impact static friction. Because the balance of the 
city economy is delicate, these events can easily throw the economy into a phase 
of decline, where lost access to resources causes citizens to leave town, reducing the 
labor force and lowering production.
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The opposite case is a static engine that infrequently produces many resources. This 
can cause the game economy to shift from periods of scarcity to periods of abun-
dance. In Caesar III, the arrival of trade caravans from neighboring cities can have 
this effect. 

n	 Escalating complexity. The escalating complexity pattern depends on a transi-
tion between two gameplay phases. As long as the player can keep up with the rate 
at which complexity is created, everything seems under control, but as soon as the 
pace passes a certain threshold, the positive feedback mechanism will push the 
game to a rapid conclusion; it creates a short losing phase in which the player suf-
fers reverses. In Tetris, these two phases are easily recognizable. Most of time the 
player is in control, but as soon as the blocks start dropping faster than he can field 
them, the game shifts to the losing phase. In Tetris, the complexity production 
involves a random factor: the type of block that is being produced. This means that 
through some luck and extra effort on the part of the player, she can push the game 
back from a losing phase to the normal phase.

n	 Stopping mechanism/multiple feedback. When a gameplay phase depends 
on a particular action to continue, you can use a stopping mechanism to make that 
action less effective because it is used more often. This means that the phase can-
not last forever and will cause a shift to a new phase. In The Seven Cities of Gold, a 
game about exploring (and exploiting) the New World, the player could avoid con-
flict with the Native Americans by using a feature called “Amaze the natives.” This 
worked well at first but became less effective over time, and the player soon had to 
use other strategies to succeed, a phase shift. The stopping mechanism is normally 
quite subtle. In addition, if the effect of the stopping mechanism does not last, the 
game might shift back to the earlier gameplay phase. In most cases, any subtle and 
slow form of multiple feedback will have a similar effect.

desiGn challenGe

The previous list is not complete or exhaustive. What mechanisms/patterns can you think 
of that create gameplay shifts in games like Caesar III or StarCraft II?

Progression through emergent phases is difficult to control. But by creating mecha-
nisms that are likely to create phase shifts in those systems, you can set up economies 
in which you can predict what type of phase progressions might occur. For example, 
in Tetris you don’t know when the game is going to shift to the losing phase, but 
because one of the mechanisms that causes this shift (the drop rate of the blocks) 
slowly increases, you know that it will eventually happen. As you gain experience 
and confidence as a designer, you will find that you will become much better at 
designing this type of emergent progression and can use it to build engaging systems 
that don’t depend on scripted events. 
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Summary
In this chapter, we continued our exploration of ways to more closely integrate 
game mechanics with progression techniques. We first examined a variety of  
traditional lock-and-key mechanisms and showed how they can be extended by  
creating dynamic systems that serve as keys to unlock new regions or new features 
of the game.

In the second half of the chapter, we considered ways to make game progression 
an emergent property of the game rather than a simple factor based on a player’s 
position in the game space. By treating progress itself as a resource, or as a value 
computed from a combination of factors, it becomes possible to create games with 
much less predictable progression patterns. Using the slow cycle and other design 
patterns, you can also break the game’s progress into distinct phases, which creates 
variety in the gameplay for the player.

In the next chapter, we turn our attention to the ways you can use game mechan-
ics to transmit a meaningful message from the designer to the player. As people start 
using games more and more to teach, inform, and persuade, this is an increasingly 
important topic.

Exercises
1. Review your recent game designs. Find a lock-and-key mechanism. Without  
adding new mechanisms to the game, try to find at least three different ways to  
create different locks for the same key.

2. Pick two random design patterns from Appendix B and use them to create  
a dynamic lock-and-key mechanism. Can you use that mechanism as the basic 
structure for an entire level?

3. Find a published game of emergence that clearly has a distinct number of game-
play phases. Can you identify what mechanisms work to stabilize a phase, and what 
mechanisms work to create transitions between phases?

4. What patterns can you use to create emergent gameplay phases in the Lunar 
Colony game? (See the section “Designing Lunar Colony” in Chapter 9, “Building 
Economies.”)
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Meaningful Mechanics
The conventional video game industry devotes its attention to creating entertaining 
(and profitable) games, but games can be used for much more than entertainment. 
An increasing number of companies are dedicated to building games to teach, per-
suade, enlighten, and even heal. Many of these games try to transmit a message of 
some kind to their players. They can do this in various ways, but here we are con-
cerned with mechanics and their interaction with the other parts of the game—the 
setting, the artwork, and the story (if any).

In this chapter, we will discuss how you can create mechanics that are meaningful. 
First we’ll look at serious games and what they do. Then we’ll examine communi-
cation theory and semiotics and apply the lessons learned from these disciplines 
to game design. Finally we’ll look at games that offer multiple layers of meaning, 
including meanings that contradict each other, a phenomenon known as intertexual 
irony. Even if you’re primarily interested in building entertainment games, you can 
use the lessons in this chapter to create entertainment games that are more mean-
ingful and have a message of their own.

Serious Games
Play and learning share a long history. Humans, and many animals too, have always 
used play to prepare for more serious tasks in later life. When children play hide-
and-seek, they exercise some of the same skills that hunters use. Hunting skills are 
not as vital as they once were, but other children’s games such as playing house and 
driving pedal cars are still relevant and prepare them for activities that will probably 
be in their futures. 

When play evolved into the more structured activity that we call gaming, it retained 
this learning aspect. Game designer Raph Koster wrote a book called A Theory of Fun 
for Game Design (2005) about the relationship between fun and learning in games. 
He argues that, no matter what game you play, learning and mastering the game is  
what triggers our fun experience. You probably recognize the triumphant feeling you  
get when you figure out a puzzle in a game and execute the right moves to beat that 
level. Playing games is a constant process of learning: learning the goals, learning the  
moves, learning the strategies to achieve those goals. This goes for all types of games,  
even if they are abstract puzzle games like Tetris that have no obvious similarities to  
tasks in real life. Although Koster’s viewpoint is a bit overstated (there are many sources 
of fun in games besides learning, such as social interaction and aesthetic pleasure), 
his essential point is correct: Gameplay involves learning in an enjoyable form.

271

ChAptEr 12
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the Gamer Generation

video games are now ubiquitous in the developed world. an entire generation has grown 
up playing them. The lessons these games taught them has changed their stance in life. 
in their book The Kids Are Alright (2006), John Beck and mitchell Wade argue that the 
current gamer generation has a different attitude toward work than previous generations 
did, produced by their experience as gamers. For example, gamers are likely to regard 
failure as a temporary setback rather than a disaster. a lifelong diet of failed attempts 
and restored game sessions has reduced their fear of failing. in addition, in games every 
problem has a solution. The player might not see it immediately but has an implicit trust 
that the game is fair and the designer has included a way of overcoming its challenges. 
This has trained gamers to approach real-life problems with more confidence and with a 
can-do mentality, even though life is less fair than games are.

The term serious game was devised in recognition that games can be used for purposes   
other than light entertainment. There is no standard definition of serious game, but 
Ben Sawyer, a well-known proponent, suggests an inclusive description: “Serious 
games solve problems.” A serious game is designed to achieve a real-world effect of  
some kind. Many of them use the player’s openness to learning while playing games   
and use the game to teach something. Games also offer an opportunity to experiment 
with new approaches to problems safely, inexpensively, and without consequences.

early Serious Games
Serious games drove the development of modern board games, long before the com-
puter was invented. What we know as Monopoly today originated as a serious game. 
It borrows heavily from an earlier work called The Landlord’s Game (Figure 12.1). 
The game was designed in 1904 by Elizabeth Magie to show the consequences of an 
unrestrained capitalist economy. She wanted to demonstrate that the system of pur-
chasing property and renting it out enriches the people who own the property while 
impoverishing the tenants. The name Monopoly is an ironic reversal of the original 
game’s intended message, but the game’s history does explain why its victory condi-
tion requires bankrupting the other players rather than simply amassing the largest 
fortune.

Most modern war games, either computer-based or tabletop, can trace their his-
tory to another serious game: Kriegsspiel (which is simply German for “war game”). 
Kriegsspiel was first developed by the Prussian Lieutenant Georg Leopold von 
Reiswitz in 1812. Later, he and his son refined it for the Prussian army to train their 
officers in battle tactics and strategy (Figure 12.2). In Kriegsspiel, players take turns 
to move colored wooden pieces over a map representing the battleground. Rules 
restrict how far pieces can move, and dice are used to determine the effects of one 
unit firing at another unit or engaging in close combat. If you have ever played a 
tabletop war game, this should sound familiar.
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FIGURe 12.1 
The Landlord’s Game board 
from the original patent

FIGURe 12.2 
Kriegsspiel.

Photo courtesy of  
andrew holmes.
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Kriegsspiel was a revolutionary innovation in the training of military officers. Despite   
its simplistic rules that replaced gun battles with die rolls, it actually improved the 
strategic skills of the officers who played it. Kriegsspiel allowed its players to try dif-
ferent battle strategies and explore their strengths and weaknesses without any 
consequences. It also gave them a chance to step into the shoes of their adversaries  
and think through strategies from their perspective. After a series of successful mili-
tary campaigns throughout the nineteenth century, many nations in Europe and 
beyond adopted war gaming as a method for training military officers. 

takinG Games seriously

some nations had trouble taking war games seriously. They did not understand how a 
comparatively simple game that used dice to resolve combat could possibly be relevant 
for the chaos and complexity of real-life battles. The history of war games is riddled 
with interesting anecdotes of success and failure caused by taking war games seriously 
or ignoring them. in 1960, U.s. admiral chester nimitz asserted that the conflict with 
Japan during the second World War was so thoroughly tested in war games that the 
only unanticipated event was the appearance of the kamikaze fighters. in contrast, the 
russians ignored their own war game results early in the First World War and suffered 
a disastrous defeat at the Battle of Tannenberg. (For more information, see the history 
of war gaming on the website of the historical miniatures Gaming society: www.hmgs.
org/history.htm.) an important lesson from the history of war games in preparing for real 
military conflict is that games with relatively simple and quite unrealistic rule systems 
can still accurately capture the essence of the real situation they represent and can be an 
excellent learning tool. 

Serious Video Games
People have designed video games for serious purposes since the 1980s, originally 
as educational tools. Unfortunately, in the rush to embrace new technology, many 
early educational games proved to be a disappointment, and the term edutainment, 
once popular, is now avoided. Too many of the early educational games were noth-
ing but thinly veiled multiple-choice tests. This produced games whose gameplay 
was constrained and uninteresting. (Of course, there were exceptions, such as the 
highly-regarded Oregon Trail.)

Modern educational games are better designed, and now they’re used in schools 
and at home to teach everything from mathematics to typing. They integrate their 
gameplay more closely with their subject matter, and they use the power of emer-
gent mechanics to teach principles, not just facts.

NOT E an excellent 
modern game that 
teaches fractions is 
Refraction. You can  
play it online at  
www.kongregate.com/
games/GameScience/
refraction.

www.hmgs.org/history.htm
www.hmgs.org/history.htm
www.kongregate.com/games/GameScience/refraction
www.kongregate.com/games/GameScience/refraction
www.kongregate.com/games/GameScience/refraction
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Serious games go far beyond education, however. Online you can find many adver-
games: games designed as an advertisement to sell a product. Today, many political 
campaigns commission games that make fun of their opponents, and both news 
agencies and game companies have started to experiment with short games that 
comment on current affairs as a new version of the editorial cartoon in newspapers. 
Games have found many uses in the field of health care, from psychological and 
physical therapy to training physicians and surgeons. 

It is not easy to deliver a particular message in a game that offers the kind of 
dynamic freedom that games of emergence create, but we are convinced that it is 
possible. As we mentioned at the beginning of this chapter, playing a game (espe-
cially for the first time) is a process of enjoyable learning. There is no reason why  
a game cannot be fun and meaningful at the same time. In fact, there are many 
good examples of commercial games, such as SimCity or Civilization, that have been 
used as part of educational programs to teach social geography or political history. 
In the 1980s the U.S. State Department used Balance of Power, a game about the geo-
political struggle between the United States and the Soviet Union, as a training tool 
for diplomats.

To explain how serious game designers can use game mechanics to send messages, we  
turn to communication theory and semiotics, the study of signs and their meanings.

GamiFication

Gamification is the latest trend in the serious application of games. By applying gamelike 
mechanics to activities not normally thought of as games, gamification seeks to change 
people’s behavior or to make dull, but important, tasks enjoyable. The idea is not really 
new; airlines have been doing it for decades with their frequent-flier programs. By offer-
ing rewards to loyal customers, airline companies try to dissuade people from flying with 
competitors. even a simple loyalty card that earns the buyer a free cup of coffee for every 
ten cups purchased is a trivial form of gamification.

Gamification is not limited to manipulating consumers, however. researchers have 
begun to consider ways to use gameplay to encourage other useful behaviors, taking 
advantage of people’s natural enjoyment of games. a recent example includes Foldit, a 
crowdsourced search for useful protein molecules characterized as a series of puzzles. 
another is experts exchange, an online database of solutions to computer problems. 
Participants compete to provide the most useful answer to a given question, earning 
points for being chosen. The points earn them badges of achievement and free access to 
the site.

at the moment, few gamification efforts have created games with real strategy or com-
plexity, but they could. You can use the mechanics we discuss in this book to analyze and 
develop gamification strategies.
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Communication Theory
Games are related to other media like films, books, or newspapers; they all com-
municate to their audience. Films and video games use audiovisual means, while 
books, newspapers, and board games rely on static images and written text. 
Communication theory has long studied how effective different media and particu-
lar media messages are at reaching their audiences. Communication theory looks 
at all types of messages and meaning: advertisements, political statements, and per-
sonal opinion, but also personal artistic vision and humorous statements.

Communication theorists have developed a model of communication in which a 
sender sends a message along a channel to a receiver (Figure 12.3). The model typi-
cally includes the following elements:

n	 The sender is a person or a party who wants to reach the receiver with a particular 
message. 

n	 The receiver is the audience, the people who need to understand the message. 

n	 The channel is the way the sender sends the message to the receiver. The channel 
is often referred to as the medium—text, images, and so on.

n	 The signal consists of the tangible, physical signals used to address the receiver. 
In a book, the signal is built from words and letters. In music, the signal consists 
of vibrations in the air that we recognize as sounds of different frequency and 
character.

n	 The message is the intangible part of the message that resides in our brain. You 
might think of it as (sub)conscious thought or the meaning. The aim of communica-
tion is to transfer the message from the sender to the receiver.

Different attributes of these elements affect communication in different ways. For 
example, if the signal is constructed in such a way that it rhymes, it attracts more 
attention and becomes easier to remember. A famous example is the old campaign 
slogan for Dwight D. Eisenhower’s campaign for U.S. president: “I like Ike.” The 
characteristics of the channel or the medium are also very important. Music is good 

NOT E We include 
subconscious thought 
because some senders 
seek to send messages 
to people without the 
receivers being con-
sciously aware of it. 
The signals are sent 
as subliminal stimuli. 
This is known to work 
in certain kinds of psy-
chological tests, but 
there is insufficient evi-
dence that subliminal 
messages can change 
purchase decisions or 
political opinions.

FIGURe 12.3 
a model of 
communication
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at evoking moods and emotions but poor at transmitting rational assertions. Every 
medium has particular strengths and weaknesses that must be taken into account 
when you want to communicate effectively.

art and entertainment

communication theory still applies to your game, even if your game isn’t a serious game 
and has no message to convey apart from its innate entertainment or aesthetic value 
(that is, if you are making a pure art or entertainment game). The russian scholar of 
literature and poetry roman Jakobson used communication theory to explain the dif-
ference between poetry and literature on the one hand and other forms of written text 
on the other (1960). he observed that communication can focus on different things. For 
example, a message that is focused on the receiver is an instruction or a direct address. 
a classic example would be the U.s. army recruiting poster with a picture of Uncle sam 
pointing directly at the viewer and text reading “i want YOU for U.s. army.” in contrast, 
a message that is focused on the sender is trying to enhance the sender’s reputation. 
Jakobson called these different focuses functions. he also identified the poetic function. 
The poetic function is in use when the focus of the communication is on the signal itself—
when it calls attention to itself because it is artfully constructed, because it rhymes, 
and so on. What we call literature and poetry are forms of communication with a strong 
poetic function, and part of appreciating this type of text comes from our admiration for 
the craftsmanship that went into constructing the signal.

his observations are equally applicable to any other medium and art form, including 
games. We appreciate art games but also entertainment games, in part because we 
enjoy and appreciate their skillfully constructed signals. 

It is important to note that this model of communication assumes that the signal 
travels in one direction. It suggests that a sender has a specific message and that 
the receiver does not reply. This model fits broadcast media, in which one powerful 
sender (for example, a newspaper or a television network) sends one signal to many 
receivers at once. Mass communication of this sort is effective because senders often 
have the time and resources to produce long, high-quality signals that are good at 
conveying the intended message. However, it turns the audience into passive con-
sumers of signals. This approach does not suit all applications equally well. In an 
educational situation, you want the receivers (students) to be active participants and 
to play with the message themselves to fully grasp it. That is why we list exercises at 
the end of every chapter in this book and provide interactive examples on the com-
panion website.

How the Medium Affects the Message
To communicate effectively, it is important to choose the most suitable medium. 
You have probably heard Marshall McLuhan’s famous quote “the medium is the 
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message” before. McLuhan meant that the attributes of the chosen medium for 
communication are more important than the actual signal. He was exaggerating 
for dramatic effect, but he had a point. The medium you choose reveals a lot about 
your intended message even before you send it. People have beliefs and prejudices 
about media that are quite independent of the actual message. For example, writing 
a book makes us look more authoritative than making a film would. 

The strength of games as communication media is that they allow interactive communi- 
cation, both between the designer and the players and among the players themselves. 
In a game, the audience is actively involved with the signal. This has advantages 
but, as we will see, also makes communicating with games harder, or at least differ-
ent, from communicating with books or films. Many of the people who commission 
and pay for serious games—a serious game designer’s clients—still think in terms of 
broadcast media. They’re used to thinking about presenting data rather than giv-
ing the audience something interesting to do. While games retain some elements 
of classic broadcast media, they are also crucially different. Some messages are well 
suited to be told through games, but others are best mediated through other forms.

sometimes it is better to make a Film

Films communicate certain types of messages more effectively than games can. if you 
have a particular story that you want to tell and that story is long, is detailed, and leaves 
little room for interpretation or experimentation, film will be much more effective. 
Games are a medium that needs active participation by its audience. When a player plays 
a game with a story in it, he contributes events to the story through his actions, even 
if they don’t change the plot or the ending. if your message leaves no room for active 
participation, then you shouldn’t make it into a game.

Games possess a unique quality that sets them apart from all other media: They 
are the only medium in which the signal is generated by mechanics. Games can 
use audio, video, animation, and text—the presentational media—to deliver their 
message, but their mechanics are their strength. If your game uses only presenta-
tional methods, then you might as well use some other medium that is better suited 
to your message. As we have shown, the mechanics that govern a game’s internal 
economy create emergent gameplay. To build meaningful games, you will need 
everything you have learned about mechanics so far and use that knowledge to  
create the right mechanics to fit your message.

Games and films share the quality that their signals have a high production value. 
This creates expectations in the audience. When we watch a film or play a game, we 
expect a high-quality production. We might pay a few dollars to see or buy it, but 
we know it costs far more to create it. This probably explains why clients expect so 
much when they order a serious game: They compare it with the latest production 
out of Hollywood and the latest batch of triple-A game titles. Serious games with 
smaller budgets have trouble living up to these expectations because, unlike film, a 
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lot more work remains invisible to the casual observer—all the software engineer-
ing, tuning, and testing that filmmakers don’t have to do. Games are interactive 
devices and must accommodate different scenes and different endings. Unlike films, 
games are not just signals; they are machines designed to create the signal that must 
deliver your message.

How Mechanics Send Messages
Good games, serious games included, don’t lecture or preach. To use a game to com-
municate, you don’t just produce a clever signal to convey your message. Instead, 
you construct a machine—the game’s mechanics—that produces the signal for you. 
Figure 12.4 illustrates the idea. This isn’t as efficient as simply telling people things, 
but for some messages it is a better way of creating understanding and acceptance in 
your receiver. People infer your message by interacting with the game and observing 
its output. 

It may not seem obvious how game mechanics send messages, especially when, in 
video games, the mechanics are mostly hidden and observable only through their 
outputs on the screen and their reactions to a player’s inputs. We’ve provided two 
examples to show how the process works: SimCity and PeaceMaker.

In the original SimCity, the player could set the property tax rate and decide what 
to spend the revenue on. The game included a mechanic that caused businesses to 
leave town if the player raised taxes too high. Some people interpreted this to mean 
that the game had a pro-business, capitalist agenda. But it also included a mechanic 
whereby the player could increase the citizens’ happiness by spending tax money 
on civic amenities like sports stadiums and public parks—indeed, in the game, the 
citizens demand them. Some people interpreted that to mean that the game had a 
socialist agenda. Both the right and the left read political messages into the internal 
economy of SimCity. In fact, the game was a well-balanced simulation of a medium-
sized American town. Both messages were intentional but never stated in the form 
of an explicit assertion. Instead, the players discovered them through gameplay. If 
you tried to play the game either as a high-tax socialist or as a low-tax libertarian, 
you would lose. The former would drive the businesses out of town, and the latter 

FIGURe 12.4 
communicating  
via games
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would drive the residents out by never having enough money to build the facili-
ties they wanted. By making choices about how the game’s mechanics work—and in 
particular, what the player must do to succeed—the game sends some rather subtle 
messages. The true, overarching message of SimCity is that extremist policies don’t 
succeed, but a balanced approach does.

While SimCity was designed to be pure entertainment, PeaceMaker is a persuasive 
game, one kind of serious game. PeaceMaker sends a much more direct political mes-
sage. The object of the game is to achieve peace between the Palestinians and the 
Israelis, and you can play as either the president of the Palestinian Authority or the 
prime minister of Israel. But in either role, if you take a hawkish, hardline attitude, 
you are doomed to fail. The mechanics are set up in such a way that only construc-
tive engagement can succeed. 

This raises an important point: What makes mechanics-as-messages work is the 
effort that the player expends to win the game. Games punish certain behavior 
and reward other behavior, and to win, the player must learn, and then do, what 
the game wants. If you created a sandbox game that offered an unlimited supply 
of resources and no negative consequences for anything the player did, the player 
could ignore any message that your mechanics were supposed to send. In fact, she 
would probably never become aware of a message at all, because the game would 
not constrain her behavior in a particular direction.

The fact that the player has to act to produce the signal is an important quality of 
games. Although delivering your message through the mechanics is more subtle 
than direct presentation, the player is more likely to remember the message because 
she deduces it for herself over a longer period. Having her doing things, and think-
ing about their consequences, is much more effective than simply telling her what 
is expected.

Design Challenges
Writing an essay or making a documentary to send your message requires talent, 
but at least you know that you have complete control over the signal you create. 
Sending messages via mechanics is trickier. You have some control over what will 
be in the signal—the computer’s outputs—because you provide the sounds and the 
images the game can display. But the player’s own actions will affect the way the 
signal is produced. The player may do things that reveal those sounds and images 
in a different order, or perhaps not at all. Nor can you be certain that your player 
will necessarily infer your intended message correctly. He might not be perceptive 
enough, or he might not care enough to think about it. Really hardcore players 
often treat a game simply as an abstract system to be optimized and pay little atten-
tion to context or meaning.
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As a designer of a signal-producing machine, you have to be aware of all the pos-
sible signals that the game might produce. Look closely at the player actions that 
the mechanics require of the player (as we mentioned earlier, things the player must 
do to win) and at other actions that are available but optional. If shooting things is 
a core mechanic in a game and required to win, there is no point in denying that 
the game sends the message “violence succeeds.” If you want to offer a nonviolent 
strategy in the game, it should be a clear and viable option, one that can also lead 
to victory. The economic structure of a game will dictate how the game might be 
played, and the most effective strategies will send their message more clearly than 
less effective ones. If a player can win a game rapidly and easily through violence 
but only slowly and with difficulty through nonviolence, that sends a message that 
violence is an efficient way to solve problems.

Even though mechanics are a more subtle way of sending your message than pre-
sentation, they can still seem preachy if you aren’t careful. If you frequently offer a 
player a choice of options (say, violence or negotiation) but always punish one, the 
player will quickly realize that it’s a false choice. Role-playing games that require 
players to behave in conformity with their chosen good or evil character alignment 
often make this mistake, producing what’s known as the “Jesus/Hitler dichotomy.” 
Players who choose to be good must be absolute saints, while those who choose 
to be evil must be homicidal maniacs. Their mechanics for determining whether a 
player is acting according to his alignment lack any subtlety.

PeaceMaker, the game about Israel/Palestine diplomacy, avoids this problem by 
requiring that the player conciliate the hawks on his own side. You have to make 
peace, but it isn’t enough simply to be a dove all the time; that will get you thrown 
out of office by your own people. No matter which side you play, you must deal 
with your own side’s religious militants as well as the other side. In effect, to win 
the game you have to reconcile two mechanics with different criteria for success:  
the need to stay in office and the need to make peace. It requires a nice political  
balancing act to pull it off. In the early stages of the game, your own side’s militants 
are powerful. Later, as your policies begin to succeed, they don’t matter as much.

Even abstract mechanics that lack any context or back story can still create a certain 
emotional tone. A game produces a different message —and evokes different emo-
tions—when resources accumulate faster and faster because of positive constructive 
feedback than when no resources are produced and the players need to survive and 
make do with what little they can hang on to. The theory and design methods we 
discussed in the previous chapters will help you to understand what messages your 
game sends.
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Games and ethics

The joint responsibility of players and designers for the signals a game produces creates 
a morally gray zone. To what extent can a designer be held accountable to the signals a 
game produces, and at what point does the player become responsible for what a game 
means? if you make a game designed to take a stance against bullying at school, are you 
responsible if a player subverts the mechanics in such a way that can actually use it as a 
bully simulator? 

in 2001 there was a considerable debate about Grand Theft Auto III when critics asserted 
that the game required the player to murder prostitutes to advance. however, the game 
never requires that of the player. Players would find their health boosted to 125% after 
visiting a prostitute and could get back the $50 that they paid her if they killed her af-
terward. But the player did not need to kill her, and the $50 would make little difference 
on the vast amounts of money the player would typically have in that game. On the other 
hand, the game did provide all the basic building blocks to construct those signals: it 
provided prostitutes and weapons. The fact that the game allows the player to perform
these actions, with no negative consequences, created an unplanned message. it seems 
worse than having these events occur in a film where the audience cannot be responsible 
for the events that occur in the film. 

We will return to the case of Grand Theft Auto III later in the chapter. 

The Semiotics of Games and Simulations
The field of semiotics offers another relevant theoretical perspective on meaning in 
games. Semiotics examines the relationship between signals and their meaning (or 
the message)—in other words, between what the receiver perceives (sounds, images, 
words) and what the receiver understands them to mean. It is often called the theory 
of the sign. In classical semiotics, a sign is a double entity that has a material sig-
nal that stands for an immaterial meaning (or message). Based on the relationship 
between its signal and its meaning, signs are classified into three types:

n	 An icon is a sign where its signal resembles its meaning. A good example is a pic-
ture of a person: The picture simply looks like the person. Certain words are also 
icons: They sound like the thing they indicate (such as the barking of a dog), but 
these are rare.

n	 An index is a sign where the signal is causally related to its meaning. The classic  
example is a footprint that signals that somebody has been there (meaning). Similarly, 
smoke (signal) can indicate the presence of a fire (meaning).
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n	 A symbol is a sign where the signal is related only to its meaning by convention. 
Individual names are a good example, as are many words. Names do not resemble 
the people they indicate, and most words we use share nothing with the objects 
they indicate; we need to learn them all. Another example are roses (signal) that can 
stand for love (meaning). The roses have no inherent relationship with love, and 
our association between them is learned from convention. Cultures in places where 
no roses grow use other symbols to stand for love.

classic semiotic terminoloGy

The terminology we use in this book is slightly different from the classic terminology 
used in semiotics. Where we say a sign is a double entity consisting of a signal and 
its meaning, a semiotician would say a sign is a double entity consisting of a signifier
that stands for a signified. These are terms coined by Ferdinand de saussure (1915). The 
relationship between signal and meaning, or signifier and signified, is indicated as a 
form of representation: The signal represents its meaning. Thus, a book can represent 
an philosophical argument, and a game can represent certain ideas on the qualities of 
a particular product. From now on, we will often use the term representation to indicate 
this relationship between a signal and its meaning.

The categories of icon, index, and symbol were devised by charles sanders Peirce, most 
of whose important work was published after his death in 1914 (Peirce 1932). Peirce didn’t 
use the terms signifier and signified, but his work was later adapted to fit the founda-
tions laid by saussure. if you are interested in finding out more about semiotics, we don’t 
advise you to go back to original works of Peirce and saussure, because they are not very 
accessible to a modern audience, and a good deal of research has taken place since their 
day. We recommend that you look at John Fiske’s Introduction to Communication Studies
(2010), which offers a useful modern approach both to semiotics and to communication 
theory generally.

According to semiotic theory, symbols play an important role in our knowledge of 
the world. Symbolic signs such as words allow us to speak about things in the world 
in general terms and transfer observations from individual cases to more general 
situations. The word apples is just a sound we make with our mouths, or a series of 
squiggles on a page, but it can refer to a particular collection of real apples or to the 
general concept of apples, including ones of different varieties. It also has a whole 
range of other connotations and usages. The Dutch word for potato is aardappel 
(“earth apple”) because when potatoes first arrived from the New World the Dutch 
had no name for them and chose to modify a familiar one. The sentence “you’re 
comparing apples and oranges” isn’t even about apples at all; it means “you’re making 
an invalid comparison.” Finally, the fruit that Eve ate in the Bible is often described 
as an apple (though that’s not actually in the Bible), so the apple has come to stand 
for eroticism in art (though that’s not in the Bible either). In sum, words provide 
shortcuts with which we can communicate large and complex meanings efficiently. 
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Semiotics were developed to study signs in traditional and mostly static media: spoken 
language, texts in books, film, visual art, and so on. Applying semiotics to games, we 
need to consider what we classify as signs. We could use semiotics to look at the sig-
nals produced by the game machine in the same way as semiotics would look at the 
signs and signals in any other media. In that case, we can talk about the realism of  
the signal, or its resemblance to its intended meaning. We can also try to apply semiotic 
theory to the game itself and not so much to its output. In that way, you could say 
that a game (as a tangible system of rules) stands for another system. For example, 
the game World of Warcraft (the game with all its mechanics) stands for an imaginary 
fantasy world (with all its intended complexities and nuances). In general, this is 
exactly how many people think about simulation, in which you create one system 
(the simulation) to model another system (the weather system, for example). 

Games and Simulations
Game developers have debated the kinship between games and simulations for 
some time. They are similar because they both use a system of rules (or mechanics) 
to represent another system (or rather an idea of another system). Yet they are also 
different. Game designer, Chris Crawford, observed the following in his 1984 book 
The Art of Computer Game Design:

Accuracy is the sine qua non of simulations; clarity the sine qua non of games. A simu-
lation bears the same relationship to a game that a technical drawing bears to a painting. 
A game is not merely a small simulation lacking the degree of detail that a simulation 
possesses; a game deliberately suppresses detail to accentuate the broader message that the 
designer wishes to present. Where a simulation is detailed a game is stylized (Crawford 
1984, p. 9).

More recently, game scholar Jesper Juul observed the following:

Games are often stylized simulations; developed not just for fidelity to their source domain, 
but for aesthetic purposes. These are adaptations of elements of the real world. The simula-
tion is oriented toward the perceived interesting aspects of soccer, tennis or being a criminal 
in a contemporary city (Juul 2005, p. 172).

Although Crawford distinguished between simulations and games, he was really 
talking about simulations for science and engineering versus simulations for games. 
Games simulate things too—they’re just different things for different reasons. In the 
next two sections, we’ll contrast the way the simulations in scientific and engineer-
ing research work with the way simulations in entertainment games work.

simULaTiOns in science
In the ordinary practice of science, the scientist begins by making observations of 
the real world. She then forms a hypothesis about how nature operates to explain 
her observations. To test her hypothesis, she performs experiments on the real world 
and makes further observations. The results of those experiments either support her 
hypothesis or disprove it; if they disprove it, she revises the hypothesis and tries again.

NOT E Sine qua non 
is a Latin expression 
meaning (approxi-
mately) “indispensable 
ingredient.” 
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However, some hypotheses are expensive or impossible to test in reality, includ-
ing those about very large or very slow systems (such as the behavior of galaxies) or 
events in the past (such as geological processes). In these cases, the scientist forms 
a hypothesis from observations as before, but instead of running experiments, she 
builds a simulation that models her hypothesis about how nature operates. She then 
runs the simulation and compares its results with more data from the real world. If 
the simulation produces results that differ from the real world, she revises both her 
hypothesis and the simulation.

Once a hypothesis seems to be solid—it has been supported by many experiments 
or observations and never disproven—it becomes a theory and can be used to predict 
future events and plan construction or other activities. Scientists can use simulations 
to predict such things as the time and place of the next solar eclipse, for example, 
and engineers can use them to design buildings and aircraft.

Scientific simulations focus on accuracy: They model the important aspects of a 
system as closely as they can within the limits of the available time and computing 
hardware. It is very important that the simulation’s model resembles the real mech-
anisms of the system the simulation represents, and in order to refine the model, 
scientists and engineers check it against available real-world data. In semiotic terms, 
we might say that the simulations are iconic: The signal (the simulation rules) resem-
bles its meaning (the real mechanisms).

simULaTiOns in Games
In ordinary games the designer’s object is not accuracy but enjoyment. The designer 
starts with a game idea and refines it into a game design. Although it may change 
over time, the design is a static rather than an interactive thing, a collection of 
documents and diagrams and notes taken at design meetings. Programmers then 
write software that implements the systems specified by the design. In many genres, 
the software simulates something: a vehicle, a battle, a city. Both the designer and 
the programmers may borrow ideas from observations of reality (such as the law of 
gravity or the performance characteristics of aircraft), but they often ignore or alter 
real-world systems for entertainment purposes. This produces the peculiar con-
ventions found in video games, such as cartoon physics: Characters can fall much 
longer distances without hurting themselves.

Instead of testing a game’s simulation by comparing with reality, game developers 
play test it for enjoyment. When we refine our simulation, we refine it to improve 
the entertainment value it delivers, not the accuracy with which it reflects the real 
world. We care about accuracy only if the players care about accuracy. With vehicle 
simulations or sports games, the players frequently do care about some aspects of 
accuracy; but in other genres, they care much less. It’s important to know just which 
aspects matter to your audience.

In semiotic terms, games use indexical and symbolic signs much more frequently 
than they do iconic ones. Instead of trying to actually show a fighter’s state of 
health through the appearance of the fighter, which would require a very large 
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amount of animation, we show a power bar. It’s both more efficient (requiring fewer 
visual assets) and more effective (the player can read it instantly). Besides, the simu-
lation of the fighter’s health isn’t accurate anyway, because in the game the fighter 
fights at full strength until the last moment. The game, a stylized simulation of 
fighting, focuses on the most interesting aspects of the system it represents and shows 
these aspects with much more clarity.

Considering this difference between games and simulations, it is curious that game 
developers spend so much effort on making games more realistic. Realistic games are   
like iconic simulations: They try to create mechanics that resemble the mechanisms of   
the real thing they represent as closely as possible. Although realism and iconic simu-
lation in games is not a bad thing, it’s generally a mistake to concentrate on realism 
in games at the expense of enjoyable gameplay or to assume additional realism will 
lead to more fun. Games for entertainment should concentrate on communicating 
their ideas through other, noniconic forms of simulation instead. Later in this chap-
ter, we will explore the notions of analogous and symbolic simulation in more detail.

aBsTracTiOn
In either a scientific or a game simulation, we have to build mechanisms that are 
simpler than the mechanisms in real life. This is necessary because otherwise we 
would build a replica of the original system, which would run at the same speed and 
operate on the same scale. We wouldn’t be able to use a replica to fast-forward time 
or test ideas in a safe environment. Because a simulation must be simpler than the 
system it represents, the simulation designer makes the decision to leave out certain 
details. This process is called abstraction.

There are two kinds of abstraction: elimination and simplification. In general, you 
can safely eliminate factors from your simulation that have little or no effect on the 
operation of the mechanics. In simulating the aerodynamics of an automobile, it 
simply may not be worth going to the trouble of including the windshield wipers or 
the radio antenna; their influence is too small to bother with. And of course some 
details, such as the interior décor, are completely irrelevant.

When we abstract through simplification, we look for features of a simulation that 
contribute to its overall mechanics but whose inner workings don’t really matter. 
Then we model those features in a very simple way, without including those inner 
details. An example will show what we mean. Suppose you are trying to model the 
effects of military vehicle failure on military readiness on a grand scale—all the 
vehicles in an entire nation’s armed forces. Suppose that you also know from collected 
statistics that one in every 10,000 aircraft landings puts the airplane out of commis-
sion because of damage to the landing gear. Your job is not to actually figure out what’s   
wrong with the landing gear but simply to include this factor in your model of over-
all military readiness. Instead of modeling the landing gear machinery in detail, you 
just build in a random 1-in-10,000 loss factor for landing gear damage. You have 
abstracted the landing gear problem to a simple random factor. When you run the 
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simulation, you can change the rate of loss to study the effects of improving the gear 
on the overall system, even if you don’t know how to actually improve the gear itself.

When a game includes a feature in which the avatar carries cash around, it seldom 
keeps track of the exact numbers and denominations of the notes and coins. It sim-
ply says the avatar has $25.37 and leaves it at that. The inner details about the cash 
have been simplified out because the player doesn’t care and it doesn’t affect the 
rest of the mechanics. Both scientific and game simulations do this kind of thing all 
the time—games more frequently. Scientists and engineers also tend to abstract dif-
ferent features than game developers do, and for different reasons. A scientist wants 
an accurate outcome, while a game developer wants an enjoyable one.

simulations can lie

The writer and semiotician Umberto eco once famously wrote that semiotics is “the 
theory of the lie” (1976). What he meant is that signs are anything that potentially can be 
used to lie, and therefore by extension semiotics concerns itself with lies as well as truth.

simulations, too, can be used to lie to people, either innocently or intentionally. Game 
scholar ian Bogost warns us that no matter how realistic a simulation might seem, it is 
always to some extent subjective (2006, p. 98–99). The process of abstraction creates the 
subjectivity, because the designer has made a decision about what to exclude. so, no 
matter how accurate a simulation seems, you should never mistake it for the real thing, 
and always be aware of the choices the creators of the simulation made—and why they 
made them. 

an interesting example is the game America’s Army. This multiplayer first-person shooter 
game goes to great lengths to appear as realistic as possible. it even requires you to go 
through weapons training before you are allowed to go on “real” missions. The game 
was published by the U.s. army, and obviously they have a stake in the game seeming 
realistic. after all, they use the game to recruit people into the army. however, you can 
learn a great deal about this game by comparing the game’s visual appearance with real-
ity. For example, in the game you don’t see much blood or gore. real combat is a messy 
and shocking affair that nobody would stomach easily. But that’s not the message the 
U.s. army wants to convey when trying to recruit people.

more interesting is the choice to create a multiplayer game in which teams of players can 
fight against each other but at the same time to represent both sides as american sol-
diers. as a player, you see yourself and your teammates as american soldiers, while you 
see the other team as insurgents. at the same time, the other team sees themselves as 
american soldiers and see you as the insurgents. Understandably, the U.s. army did not 
want to publish a game that people could potentially use to train in fighting american 
soldiers. as a result, the gameplay is essentially symmetric: Both sides have american 
equipment and use american tactics. This is in stark contrast with the asymmetric 
warfare that the game claims to depict (americans fighting insurgents). For this reason, 
America’s Army cannot train prospective soldiers in counterinsurgent tactics.
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simULaTiOn in seriOUs Games
The simulations in serious games fall somewhere between scientific and entertain-
ment simulation, depending on the purpose of the game. A game that intends to 
persuade will skew its mechanics to make its point, as PeaceMaker did. An edu-
cational game will make an effort to represent its subject matter correctly, as a 
professional flight simulator does.

In entertainment games, we often abstract out details that aren’t fun. This is why 
entertainment war games never deal with the logistics of transporting food and  
fuel to the battlefront or transporting the wounded to hospitals, because they’re  
not as much fun as the strategy and tactics of combat. But a serious game that  
genuinely intends to educate people about the logistical challenges of warfare cannot 
afford to completely ignore these aspects and needs to instead find a way to include 
them. This can create a conflict between keeping the game fun and sending the cor-
rect message.

To resolve this problem, design your serious game directly around the subject that 
you want to teach, and abstract out other areas even if they would be more fun in 
an entertainment product. To design a serious game about logistics, research the 
economics, challenges, and actions associated with logistics, and build mechanics 
to simulate them. Eliminate or simplify the combat so that, while it may affect the 
game, the player does not participate in it. Concentrate on making logistical chal-
lenges enjoyable in their own right, choosing game mechanics that complement 
this focus, and make the subject accessible to the player without distracting him 
with other issues.

Also, just because your mechanics must simulate your subject matter accurately in 
a serious game, it does not mean that they must simulate everything else accurately 
too. Serious does not mean serious about everything. It’s perfectly acceptable to make a 
game about logistics with cartoon physics (and cartoon graphics, for that matter) as 
long as your simulation still teaches the core principles correctly.

It is almost always a mistake to start designing a serious game by trying to copy an 
existing entertainment game. Build your mechanics and gameplay around your sub-
ject matter.

Analogous Simulation
An inventory is an example of an analogous simulation. Ever since Adventure (1976), 
video games have included an inventory. The game allows the player’s character 
to pick up objects and carry them around. The player manages these objects in the 
game’s inventory screen. For design purposes or physical memory reasons, most 
games use some means to restrict the number of things that the character can carry. 
The game may limit the player to a fixed number of items, or it may assign a weight 
value to each item and restrict the player to a certain total load. 

NOT E if you are hired 
to develop a serious 
game, you will probably 
work with someone 
called a subject-matter 
expert. This will be a 
person who knows the 
subject very well but 
probably doesn’t know 
much about game 
design. You will have  
to work with him or 
her to combine your 
expertise to create an 
accurate, informative, 
and engaging game. 
This can require much 
more compromise  
and diplomacy than 
entertainment game 
design does.
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The inventory system introduced by Diablo is a good example of what might be 
called an analogous simulation. The mechanics of that inventory system do not 
resemble the mechanics behind the represented system directly, but the underlying 
ideas are causally related. In semiotic terms, the inventory is an indexical sign.

Instead of trying to simulate all the details of an item, such as size, shape, and 
weight, Diablo’s inventory system uses an item’s relative size as its main restrict-
ing factor (Figure 12.5). Each item takes up a number of inventory slots, and the 
available slots are limited and organized in a grid. An item may take up 1x1, 2x2, or 
1x4 slots, and so on. The player character can pick up an item only when there is 
enough space for it in his inventory.

This type of inventory is an example of analogous simulation on games because 
the main factors that limit what someone can carry in real life (shape, size, and 
weight) are represented by easily understandable two-dimensional shapes. There is 
a proportional relation between number of slots of the virtual items and the weight, 
shape, and size of their simulated counterparts. The internal rules and constraints 
of the inventory mechanics are immediately apparent and intuitive (not in the least 
because they are tailored toward visual representation on a screen). Yet, the manage-
ment problems the system gives rise to are very much like those problems in real 
life. The system even allows players to make an inefficient mess of their inventory, 
teaching them something about the need to organize their property to fit more items 
in their inventory—although some find this a tedious chore in a fantasy game.

The Diablo inventory system takes a lot of complicated real-world factors and 
replaces them all by a single mechanism that is well suited to the medium of the 
video game. Obviously some accuracy of simulation is lost (in Diablo an item can-
not be large and light at the same time), but the overall behavior is retained (the 
players are limited in what they can carry). The cleverness of the Diablo inventory is 
that it collapses all the nuances of managing an inventory into a size puzzle, which 
is easily represented by a computer screen, instead of weight, which was the more 
common choice in earlier games but which translates to the visual medium of the 
computer less well. 

FIGURe 12.5 
a Diablo-style 
inventory
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Another example of analogous simulation is the way most games handle health. 
The health of characters and units is often represented by a simple metric: a single 
percentage or a discrete number of hit points. Obviously, in real life, the physical  
health of a person or the structural integrity of a vehicle is a complex matter to 
which many different aspects contribute. By using a generic health value for a char-
acter, most games bundle all these aspects into one convenient mechanism. Both 
players and computers can easily work and understand the numerical metric to  
represent the bundle.

Symbolic Simulation
Analogous simulations are based on a relationship between their source system 
and their simulation mechanics, as in our example of the Diablo inventory mecha-
nism described earlier. They make use of a similarity between the two systems: not 
a sensory, iconic similarity but a causal, indexical one. (In other words, the shape 
of a real sword bears a causal relationship to the shape of the sword in the game.) 
Symbolic simulation goes one step further. The relationship between the original  
system and the simulation’s mechanics is not causal but arbitrary and based on 
convention. The use of dice in many board games tends to be symbolic. For exam-
ple, the roll of a few dice can stand for the outcome of a complete battle in a game 
of Risk. In this case, the relation between rolling dice and fighting is arbitrary, and 
one simple action well-known from other games is used to simulate a multitude of 
actions for which most players would lack expertise. Dice can replace these battles  
because, for the purposes of the game, the player should have little influence over  
the outcome of these battles. Risk is about global strategy, not about tactical maneu-
vers on the field of battle. A player cannot control the result of dice just as a supreme 
army commander cannot conduct every battle personally. (He does have the power 
to decide how many troops he will commit to the battle and when to withdraw.)

Something similar occurs in Kriegsspiel and many later war games. In contrast to 
Risk, these other games are all about tactical maneuvering on a battlefield. As a 
result, their rules are quite elaborate, but the rules covering individual combat are 
left to dice and attrition tables. Again, these games were designed to train tactical 
skills, not how to use a gun. 

Dice are wonderful devices to create a nondeterministic effect without the need for 
detailed rules. At a suitably high level of abstraction, a complex and nondetermin-
istic system, such as individual combat, has a similar effect as rolling a few dice: a 
complex system whose outcome is hard to predict and control. This is exactly the 
same sort of abstraction that we described earlier in the section “Abstraction” when 
we discussed aircraft landing gear. Especially when the player is not supposed to 
have much influence over this system, dice mechanics can be used to replace the 
more complex system. The characteristic randomness of different dice mechanics 
can be used to match many superficial, nondeterministic patterns created by more 
complex systems. 
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Other examples, such as jumping on top of enemies to dispose them in the classic 
video game Super Mario Bros., fall somewhere in between symbolic and analogous 
forms of simulation. Although the precise implementation differs from enemy to 
enemy, and certainly does not work against all enemies, it is a frequent feature 
throughout the game and the series to which it belongs. This method of fighting 
is a little odd, to say the least, but is simple to implement in code. The ability to 
inflict damage by jumping on top of an opponent has become a convention within 
platform games that is instantly recognizable to gamers and ties in with that genre’s 
defining action of jumping from platform to platform. 

The connection between jumping on top of something and defeating something 
in real life is not completely arbitrary, but its use in platform games has become so 
conventional it parallels the definition of a symbolic sign in language. In the real 
world, there are creatures that can be squashed by jumping on top of them, but it’s 
a peculiar thing to do to a robot or a turtle. What is more, this method of fighting in 
Super Mario Bros. is motivated more by the fun of the genre’s most prominent action 
of jumping than it is motivated by any claim to realism. The link between the simu-
lation and what is simulated is both arbitrary and conventional—especially in the 
multitude of platform games that followed the example set by Super Mario Bros. (In 
Sonic the Hedgehog, Sonic had only one type of attack in the whole game: jumping.)

There is, however, some relationship between the skills needed to defeat enemies 
in Super Mario Bros. and in real life. In the game, it requires timing and accuracy, 
which are among the skills involved in real fighting. Our point is that the simple 
representation in the game allows us to do more than to hone and train those skills. 
The metaphor of jumping on top of enemies is easy to grasp by the player, but the 
game then goes on by inviting the player to experiment and develop strategies. The 
jumping-on-enemies mechanism is a very clever way of adding combat rules to a 
jumping game; it introduces no new actions for the player. It does this by replacing 
actions it tries to represent (fighting) by other, arbitrary rules already implemented 
in the game (jumping). This reduces the number of actions the player needs to 
learn, allowing him to quickly move on to a deeper, more tactical or strategic inter-
action with the game instead of fussing around with its interface. As we argue 
shortly, symbolic simulation effectively reduces the system to a simpler construction 
with more or less equivalent dynamic behavior.

less Is More
Analogous and symbolic simulations tend to create simpler game systems than real-
istic iconic simulation would, with beneficial effects. Simpler games are easier to 
learn, yet they still can be quite difficult to master. Games are not the only medium 
for which the expression less is more rings true. In almost any form of representational 
art, people appreciate conciseness and economy—especially critics and connoisseurs. 
One exactly correct word is preferable to 20 others that miss the mark. 



ptg8274339

292 Game mechanics: advanced Game desiGn

is there a maximum number oF mechanisms?

it is impossible to state exactly how many mechanisms a game should have. each indi-
vidual design has its own balance, and of course the answer depends a lot on the game’s 
intended audience. children’s games should be less complex than those for adults, but 
even adults can enjoy very simple games. We feel that a game’s mechanics should pro-
vide as many gameplay options as its audience will enjoy (and as are consistent with the 
game’s fantasy), but not so many that they impose an unreasonable cognitive burden on 
the player. That is the balance to be struck.

different audiences have different preferences, however, and if you adopt the player-cen-
tric approach that ernest adams advocates, you must keep your player’s wishes in mind 
at all times. in recent years, a number of fighting games have simplified their mechanics 
with Quick Time Events (prompted sequences of button presses in which the player is told 
explicitly what to do), much to the disgust of the fans of more traditional fighting games. 

antoine de saint-exupéry’s famous quote “it seems that perfection is reached not when 
there is nothing left to add, but when there is nothing left to take away” (1939) applies 
well to game mechanics—so long as the players are happy!

We already know that relatively simple mechanisms can produce emergence, and 
games can create interesting gameplay with a small set of mechanics. Using a small 
number of design patterns to generate complex gameplay has many advantages.  
The design becomes easier to manage for the designer and easier to implement for 
programmers and artists, and the game becomes easier to learn for the player. In our  
simulation examples (Diablo’s inventory, health points and dice in Kriegsspiel, and 
jumping in Super Mario Bros.), using analogous and symbolic simulation resulted in a 
simpler rule system than an iconic simulation would have. Compared with a com-
pletely detailed, realistic simulation, analogous and symbolic simulation aims to 
capture the essence of the source system with fewer elements. 

In terms of Machination diagrams, analogous simulation reduces the number of 
elements in the diagram by replacing similar mechanisms with only one mecha-
nism. Symbolic simulation goes one step further, by connecting mechanics in the 
game where they would not be connected directly in the real world. As is the case 
with the use of symbols in spoken and written language, some symbolic simulations 
work better than others. The symbols that work best seem to connect two unrelated 
rules that still have some affinity between them. In the case of Super Mario Bros., 
there is a natural relationship between the physical skill and timing involved in 
both jumping and fighting.

When used correctly, abstracting features to produce analogous and symbolic simu-
lation reduces the number of elements in a system without affecting its structural 
complexity (for example, the number of feedback loops) and emergent properties 
too much. This has three advantages:
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n	 Because the game removes unnecessary detail, it allows the player to focus on 
the structural features and strategic interaction that is allowed. (It also reduces the 
complexity of the user interface, which many players appreciate.) As we have seen 
throughout this book, these structural features drive emergent behavior. By offering 
a simpler version that is easier to understand, games can train players to understand 
far more detailed complex systems in real life.

n	 A system that uses analogous and symbolic simulation can allow a complete 
session of play in much less time than the system that the play represents could 
run with many complex systems represented. The player learns the results of his 
actions and decisions fast and efficiently. On the one hand, this allows players to 
go through the process more often, and on the other hand, it will contribute to the 
pleasurable experience of agency and power that drives many commercial enter-
tainment games. (In contrast, scientific and engineering simulations, with their 
emphasis on accuracy, often run much slower than real time.)

n	 For game designers, game systems that are reduced to their essence are easier to 
manage and easier to balance. Without many parts, the designer can focus on those 
elements and structures that contribute directly to the game’s emergent behavior 
and more easily tweak that behavior into the desired shape. Games would do well 
to strive for symbolic or analogous, emergent gameplay rather than detailed realism. 
It is economically more feasible, and it allows more effective communication. (The 
audience’s preferences will influence this, however: Hardcore racing fans will not be 
content with Mario Kart.)

discrete inFinity

systems do not have to have many parts and mechanisms to create many different mean-
ings. spoken language serves as a good example. Linguist noam chomsky observed that 
in language, our vocabulary might be large but is essentially limited (most people know 
tens of thousands of words). Yet, the number of things you can say is infinite (or at least 
unlimited). This is because we can combine words in many different ways and still make 
sense of them. We write a book using language, and there is no upper bound on how 
long that book may be. chomsky called this characteristic of language discrete infinity: 
the possibility to make infinite use of discrete means (1972, p. 17).

discrete infinity is a useful concept that applies well to games. To create discrete infin-
ity, the number of elements is not as important as the number of possible connections 
between the elements. it means that as a game designer you should always be on the 
lookout to create systems where the number of meaningful combinations is large and 
possibly endless. That way, you can never know exactly what might come out of the 
system. This constitutes a risk: You might get unexpected results. But it is a good way to 
create a game from which more can come out than you’ve put in.
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Super Mario Bros. is a great example of gameplay design in which only a handful of 
game mechanisms are combined in many interesting challenges. The value of each 
mechanism does not arise from its power to represent a realistic aspect of exploring 
a forest or a dungeon but from the interesting combinations these mechanics allow. 
The exploration challenges offered by the game are almost always the result of com-
binations of simple, reusable gameplay mechanics that are often quite analogous  
or symbolic. 

The meaning that emerges from symbolic and analogous games is not necessarily 
less detailed or less valuable than games that aim for detailed and realistic simula-
tion. On the contrary, as the challenges in game are more abstract, the skills and 
knowledge the game addresses are more generic. As we already mentioned in our 
discussion on semiotics, in communicating knowledge effectively, language ben-
efits from having many symbolic constructions. In the same way, the message of a 
game that is less iconic is more applicable outside the particular setting of the game. 
This is especially useful when one wants to express something through a game 
that has value beyond the game and its immediate premise. What you learn from 
Monopoly applies to many situations both in games and in real life. You would learn 
less if Monopoly tried to be a precisely realistic simulation of the real estate market in 
Atlantic City, New Jersey (where the original version of Monopoly is set).

Multiple layers of Meaning
The most monumental works of art in human history have different layers of mean-
ing that appeal to different audiences. According to semiotician Umberto Eco, 
Shakespeare was a master of this aspect of creating works of art (2004, p. 212–235). 
In Shakespeare’s time, his plays had a strong popular appeal to the general audience. 
They had romance, drama, humor, and tragedy that was accessible to everyone.  
At the same time, Shakespeare’s plays also appealed to the social and political élite, 
because although many of the plays were set in distant times and distant lands, they 
frequently commented on current social and political affairs of the day. Moreover, 
Shakespeare managed to do all these things while writing beautiful prose and poetry 
that is appreciated even today. 

Umberto Eco points out that having multiple layers of meaning in a single work of 
art is good for three reasons:

n	 It gives the work a wide appeal to many people.

n	 It invites the audience to explore the work in different ways (you might say it 
creates replay value).

n	 Contrast and contradictions between different layers of meaning create the 
opportunity for humor and irony. 
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Games are not different from other media in this respect: They can also create dif-
ferent layers of meaning. They have a natural capacity for this, because games 
communicate through the signals they produce but also through the mechanics 
that produce the signals. There are many games that make good use of these differ-
ent layers of meaning. In the following sections, we’ll discuss a few examples.

Unrelated Meanings
Shakespeare’s plays appealed to different levels of his highly class-stratified society 
by offering them different forms of entertainment suited to their interests, even if 
they were unrelated to one another. He included political satire for the élite and 
dirty jokes and puns for the peasants (though the élite may have enjoyed them 
as well). The fact that he was able to do this in a single play, while still preserving 
its harmony, is a measure of his genius. For example, Romeo and Juliet is a tragedy 
about love and feuding families, but it begins with an extended riff of silly wordplay 
intended to set even the least educated in the audience giggling. The wordplay then 
evolves into swordplay and becomes more serious.

One of the best recent examples of a game that offers multiple unrelated layers of 
meaning is Bioshock. On the surface, Bioshock is a survival horror first-person shooter 
with some role-playing game elements. The player can, if he wants to, ignore 
everything else and concentrate on surviving, amorally killing his opponents, and 
optimizing his attributes. We might call this the physical layer of Bioshock.

At another level, the player can take the game’s moral choices seriously and try to 
play the game without harming innocent characters known as Little Sisters. He is 
not obliged to do so. It is riskier, and the game offers larger short-term rewards if the 
player simply kills them. But he experiences different gameplay, and gets a different 
ending, if he does avoid killing them. This is the moral layer of Bioshock.

At another level still, and unrelated to gameplay, the player can appreciate the 
extraordinary Art Deco landscape of the game. Bioshock’s art is so stunning that it 
has been printed and sold as a coffee-table book, a rare achievement for a video 
game. Neither the physical nor the moral aspects of the game depend on the art-
work; it is simply another part of the entertainment in its own right. We call it the 
aesthetic layer of Bioshock.

Finally, and only noticeable by those who are familiar with political theory, Bioshock 
is a satire on Ayn Rand’s philosophy of Objectivism. (The founder of the game’s 
world is named Andrew Ryan, an intentional reference—in fact, an indexical sign—
to Ayn Rand.) Objectivism is a variant of Libertarianism that argues (among many 
other things) for “uncontrolled, unregulated laissez-faire capitalism” (Rand 1964, 
p. 37). Bioshock offers a vision of what might happen if an Objectivist society were 
to engage in uncontrolled, unregulated biological experimentation: disaster and 
destruction. This is the political layer of Bioshock.
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Bioshock’s physical and moral layers of meaning are provided by its mechanics, 
which enforce the player’s need to survive and calculate the effects of his moral 
decision-making. The aesthetic layer of meaning comes from its artwork, and the 
political layer from its story, told through moments of narration. It is not a game to 
be emulated easily, but it is well worth studying.

Contrast between Appearance and Mechanics
September 12, designed by Gonzalo Frasca, states on its instruction screen that it 
is not a game but a simulation that allows users to “explore some aspects of the 
war on terror.” It presents the user with an isometric perspective of what looks 
like a cartoonish Arabic city (Figure 12.6). In the city, civilians and terrorists walk 
around; the terrorists are visibly carrying guns. As the player, you can launch mis-
siles at them, which will destroy buildings and kill terrorists and civilians on impact. 
However, it is hard to aim the missiles precisely, and they do a lot of collateral dam-
age. Most importantly, civilian casualties cause other civilians to transform into 
terrorists. The best way to keep the number of terrorists under control is to do noth-
ing, because over time the terrorists transform into citizens. As a simulation it is a 
very simplistic representation of the war on terror. September 12 might refuse to be 
called a game, but it definitely is not an iconic simulation, either.

The significance of September 12 for a large part arises from the contrast it creates 
between its appearance and the way its mechanics operate. In appearance, September 
12 looks very much like a cartoony shooter game, not unlike many similar games 
you can find on the Internet. However, the mechanics are set up in a way that 
goes against the typical shooter game: shooting doesn’t get you closer to the goal, 
assuming the goal is to get rid of the terrorists. September 12 cleverly makes use of 

T IP You can play 
September 12 online at 
www.newsgaming.com/
games/index12.htm.

FIGURe 12.6
September 12

www.newsgaming.com/games/index12.htm
www.newsgaming.com/games/index12.htm
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the user’s expectations set by countless games to set them on the wrong foot. The 
discovery that September 12 goes against their expectations creates a meaningful 
turning point that drives home the argument September 12 makes: Indiscriminate 
brute force is an ineffective way to deal with the problem of global terrorism.

September 12 is a good example of simplicity in design, which uses a contrast 
between different layers of meaning to drive home the point it tries to make. 
Because of its reference to shooter games, it has a lot of popular appeal, while the 
hundreds of thousands of letters its designer received after its release indicates that, 
though it did not please them all, many players caught the message.

A similar contrast between appearance and mechanics can be found in Brenda 
Brathwaite’s 2009 tabletop game Train (Figure 12.7). In this case, the roles of 
appearance and mechanics are the opposite of what they were in September 12. The 
rules are simple and rather vague, while a correct interpretation of the meaning of 
the game’s appearance creates a powerful contrast. The rules of the game require 
you to race railroad cars to a destination and pick up as many yellow passengers as 
possible. As you play, there are several hints that something is amiss. The passengers 
are transported in freight cars, and the broken window that serves as the “board” 
creates a disturbing ambiance. When the first train reaches its final destination, the 
location is revealed to be a Nazi death camp. Just when you think you have won a 
game, you’ve been made an accomplice in one of history’s greatest atrocities. Even 
claiming ignorance at this point (“I didn’t know; I was just playing a game”) leaves 
you to wonder whether or not you should have picked up on the hints. The bro-
ken glass is a reference to the Kristallnacht, the coordinated nationwide attack on 
German and Austrian Jews in 1938 that left the streets littered with broken glass, and 
the passengers are yellow because Jews were forced to wear yellow stars in occupied 
Europe during World War II.

FIGURe 12.7
Train
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Intertextual Irony
Difference in meaning between multiple layers of a game can be used to create an 
effect that Umberto Eco refers to as intertextual irony. Intertextual irony is created 
when a game’s (or book’s or film’s) style refers to well-known genres or settings out-
side the game, while at the same time contrasting that message with an opposed 
meaning on a different layer. A game that uses intertextual irony a lot is Grand Theft 
Auto III and its successors.

Grand Theft Auto III offers many layers of meaning. First there is the game itself, 
with its mechanics that allow the player to steal cars and commit various acts 
of crime. For that reason it has been called a joyride simulator or a “SimCrime” 
game. The game is set in a city that resembles New York. Many of the city’s sites 
and inhabitants refer to real locations and common stereotypes. The game is filled 
with references to popular culture. You can find many advertisements in the virtual 
environment for brands that look convincing at first glance but are quite ironic 
at a second glance. For example, you might see an ad for a film called Soldiers of 
Misfortune, with the tagline “They left together but come back in pieces,” which 
sounds like a typical movie tagline but whose meaning is quite the opposite of the 
usual blockbuster bravura. The car radios offer a choice of soundtracks complete 
with fictional commercials and weird jingles that sound right but are really disturb-
ing if you pay closer attention to them. For example, one radio station proudly 
advertises that it owns several networks and satellites but also ten senators. You hear 
commercials for a company that mails pets in boxes and a reality television show 
that has ex-convicts fight it out in the city streets with real weapons until there is 
only one left standing. Playing this game, it is hard to miss all these references and 
jokes, and it satirically suggests a relationship between the criminal lifestyle of the 
game’s main character and the over-the-top consumer society he is part of. If any-
thing, Grand Theft Auto III is a deeply satirical game that holds up a distorted mirror 
to society. The game mechanics generate a vast accumulation of wealth that any-
body within the world of Grand Theft Auto seems to aspire to, no matter what the 
methods of accumulation are.

Grand Theft Auto: San Andreas provides another good example of intertexual irony 
based on the contrast between appearance and game mechanics. In San Andreas the 
player character needs to shop for clothes; the more expensive his clothes are, the 
greater his sex appeal is, a vital statistic required to succeed in certain scenarios. One 
of the most expensive shops is called Victim (Figure 12.8). On the one hand, the 
shop name alludes to the urban gangster lifestyle the character and player suppos-
edly identify themselves with, but at the same time, you should wonder who exactly 
is the victim here when your character finds himself spending thousands of dollars 
on a new outfit. Your character’s criminal lifestyle means he can get the money he 
needs to buy outfits at this exclusive shop, but he risks his life in doing so, adding a 
completely different dimension to the shop’s slogan “to die for.”
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According to Umberto Eco, one of the positive effects of using intertextual irony is 
that it invites the audience, no matter what its background is, into a more reflec-
tive attitude about the work. In contrast, America’s Army lacks any hint of satire in 
spite of the peculiarity that all the players consider themselves to be American sol-
diers—good guys—and consider all others to be insurgents. The game implements 
complete moral relativism: No one is unequivocally the good guy. To those who are 
paying attention, it invites the question, “if we’re all alike, why are we fighting?” 
But it takes itself too seriously for that. Players of America’s Army are never prompted 
to reflect on this situation.

Summary
For the final chapter of our book we have examined ways to communicate messages  
with games, particularly with game mechanics. We defined serious games and dis-
cussed what they’re for and how they work. We also looked at how entertainment 
games such as Grand Theft Auto III use elements of satire to make fun of their own 
premise. Communication theory and semiotics both offer useful models for think-
ing about how a game can represent ideas and convey them to its players. You can 
use analogous and symbolic simulation as tools to communicate meaning efficiently, 
without trying to represent real-world ideas exactly. And finally, by creating games 
with multiple layers of meaning, you can build especially rich experiences for your  
players, games that transcend light entertainment and approach the status of artworks.

We hope you have enjoyed Game Mechanics and found it useful. Although we have 
not concentrated on particular genres or on software implementation techniques, 
we feel that the tools we have offered—in particular the design patterns and the 
Machinations framework and tool—will be invaluable in your career as a game 
designer, no matter what kind of games you design. Thank you for reading!

FIGURe 12.8
The victim shop in 
Grand Theft Auto:  
San Andreas
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Exercises
1. Choose a serious game (or your instructor will assign one). What message does  
it try to convey? Does it convey that message through its mechanics or by some 
other means? If it does use the mechanics, analyze them and explain how the  
player infers the message from their operation.

2. Choose a game with a strong simulation element (or your instructor will assign 
one). What mechanisms in the game are iconic, what mechanisms are indexical or 
analogous, and what mechanisms are symbolic? Explain why.

3. Choose a game (or your instructor will assign one). Which aspects of the game 
do you feel are truthful about their subject matter, and which ones lie? Be sure to 
distinguish simplification from outright falsehood. If the game is a serious game,  
do you feel the falsehoods undermine the game’s intent, or are they acceptable?

4. We gave Bioshock as an example of a game with multiple layers of meaning that 
were not closely related but permitted the player to play and appreciate the game  
on several levels. Can you think of another? Explain what the different levels were. 
Was the result harmonious?

5. We mentioned September 12 and Train as examples of games whose appearance 
contrasts with their mechanics. Can you think of others? What do you think the 
designers intended by including such a contrast?

6. The Sims and Grand Theft Auto III both satirize materialism and consumer culture. 
The Sims does so gently, Grand Theft Auto III much more harshly. Can you think of 
other games that also work as satire? How, and what do they make fun of?
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Appendix A:  
Machinations Quick reference
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Flow of resources 
between nodes

Resource Connections
Resource connections dictate how resources flow between nodes.

State Connections
State connections indicate the effects of state and state changes on other elements in the diagram. The state of a node is determined by 
the number of resources on it. 

+

*

n

Label Modifiers change the value of
labels of resource connections or other 
state connections.  

Label Modifiers

+2

Node Modifiers change the number
of resources on nodes. 

Node Modifiers

*
>0

Activators activate or deactivate nodes.

Activators

*

Triggers

Flow rate:
Random flow rate:
Intervals:
Multipliers:
All resources:
Draw randomly:

Label Types Format Examples

Label Types Format Examples Applicable to

3

Flow with
a rate of 3

Flow with
a rate of 1

Random
flow rate

Multiplayer
based flow

Skill based
flow rate

Strategy
based flow

x
Dx; yDx; x%
x/y
x*y
all
drawx

0; 2; 3; 0.5; 1.3
D6; 2D5; D3-D2; 20%; 50%
1/4; 2/2; D6/3; D3/(D6+2)
2*50%; 3*D3
all
draw1; draw2; draw5

Triggers activate nodes once when all inputs of their source node 
are satisfied. An input is satisfied when it has delivered the amount 
of resources as indicated by its flow rate.  

Reversed Triggers

!
*

Reversed Triggers activate nodes when its source node fires but 
cannot pull all requested resources from its inputs.  

Modifiers:
Interval modifiers:
Multiplier modifiers:
Probabilities:
Conditions:
Range (condition):
Trigger marker:
Reversed trigger:

+; -; +x; -x; +x%
+xi; -xi
+im; -im
x%; x
==x; !=x; <x; <=x; >x; >=x;
x-y
*
!

value modifiers; node modifiers
value modifiers
value modifiers
triggers after a gate
activators; triggers after a gate
activators; triggers after a gate
triggers
reversed triggers

+; -; +2; -0.3; +5%; -2%
+2i; -1i
+1m, -3m
20%; 3
==0; !=2; >=4;
2-5; 4-7
*
! 
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Deterministic Random Skill Multiplayer Strategy

Nodes
Nodes represent game elements that take part in the production, distribution and consumption of resources. Nodes can fire. Firing nodes 
pull resources according  to the flow rates of their input resource connections. A node without inputs will push resources according to the 
flow rate of its outputs instead. 

Pools pull and 
accumulate resources.  

Gates pull and 
immediately 
redistribute 
resources.   

Sources produce 
and push resources.  

Source

Drain

Drains pull and 
consume resources.  

Traders cause resources
to change ownership.  

Trader

Converter

Converters consume 
resources to produce 
other resources.  

Activation Modes

*

Automatic

s

Starting Action

Passive

Interactive

Fire only when in 
response to an 
activated trigger.  

Fire in response to a 
player action. (Fires 
when clicked)  

Fire once every 
time step or at the 
end of a turn. 

Fire once when a 
diagram is started.

The activation mode of a node determines when it fires.

Gate Types

30%

10%

20%

2

4

3

Gates with probable outputs distribute 
resources based on their respective 
probability. Percentages can be lower 
than 100%, in which case the passing 
resource might be destroyed.   

==4

<4

>4

<3
limiter
gate

3

1

2

>=4

<=2

==3

==0
stop

60

AP

Pull and Push Modes
By default, nodes pull as many resources as are available, up to its 
inputs’ flow rates. This behavior can be changed: 

&
All/None

The node only pulls resources when all resources as 
specified by its inputs’ flow rates are available.  

Pushing
p

Delay

Queue

Delays pull and 
hold resources 
before pushing 
them. Queues 
act as Delays 
but process one 
resource at a time.

Other Elements

Registers are used 
to perform calculations.

Pool

Gate

*
20%

The node pushes resources according to its outputs’ 
flow rates. Nodes with only outputs push by default 
(and have no marker).   

State connection outputs from 
a gate are always triggers. 
Gates can be used to generate 
probable or conditional triggers.   

Random gates with conditional outputs evaluate 
a random number to determine distribution. 
Deterministic gates with conditional outputs use 
a count if the resource that pass every timestep.   

End Conditions 
specify when a 
game ends.  

Artificial Players 
are used to simulate 
player activity.   

Interactive Registers 
are used to create user
controlled settings.  



ptg8274339

A
p

p
E
n

D
Ix

 B

Design pattern Library

Static Engine
n	 Type: Engine

n	 Intent: Produces a steady flow of resources over time for players to consume or to 
collect while playing the game.

n	 Motivation: A static engine creates a steady flow of resources that never dries up. 

applicability
Use a static engine when: 

n	 You want to limit players’ actions without complicating the design. A static 
engine forces players to think how they are going to spend their resources without 
much need for long-term planning. 

structure Participants
n	 Energy that is produced by the  
static engine

n	 A source that produces energy

n	 Actions the player can spend  
energy on

collaborations
The source produces energy at a fixed or an unpredictable rate.

consequences
The production rate of a static engine does not change, so the effects of the engine 
on game balance are very predictable. A static engine can be the cause of imbalance 
only when its production rate is not the same for all the players.

NOT E a static engine 
must provide players 
with some options to 
spend the resources 
on. a static engine
with only one option to 
spend the resources on 
is of little use.

303
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A static engine generally does not inspire long-term strategies: Collecting resources 
from a static engine, if possible at all, will be quite obvious. 

implementation
Normally, it is simple to implement a static engine: A single source that produces the 
energy will suffice. It is possible to add multiple steps in the energy production, but 
in general this will add little to the game. 

A static engine can be made unpredictable by using some form of variation in the 
production rate. An unpredictable static engine will force the player to prepare for 
periods of fewer resources and reward players who make plans that can withstand 
bad luck. The easiest way to create an unpredictable static engine is to use random-
ness to vary the output level of resources or the length of time between moments of 
production, but skill or multiplayer dynamics could work as well.

The outcome of random production rates can be, but does not need to be, the same 
for every player. By using an unpredictable static engine that generates the same 
resources for all players, the luck factor is evened out without affecting the unpre-
dictability. This puts more emphasis on the planning and timing that the pattern 
introduces. An example would be a game in which all players secretly decide how 
many resources all players can get. The lowest number will be the number of 
resources to enter play for everyone, while the players who proposed the lowest can 
act first. This would automatically set up some feedback from the game’s current 
state to this mechanism. (This system discourages inflation.)

examples
The energy produced by the spacecraft in Star Wars: X-Wing Alliance is an example 
of a static engine. The energy can be diverted to boost the player’s shields, speed, and 
lasers. This is a vital strategic decision in the game, and the energy allocation can be 
changed at any moment. The amount of energy generated every second is the same 
for all spacecraft of the same type (Figure B.1).

FIGURe b.1
distribution of energy 
in Star Wars: X-Wing 
Alliance
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In many turn-based games, the limited number of actions a player can perform in 
each turn can be considered a static engine. In this case, the focus of the game is 
the choice of actions, and generally players cannot save actions for later turns. The 
fantasy board game Descent: Journeys in the Dark uses this mechanism. Players can 
choose between one of three actions for their hero every turn: move, attack, or pre-
pare a Special Action (Figure B.2). In our diagram, a player gets two actions every 
turn and can perform the special action only once per turn. This creates five possi-
ble combinations: The player can attack twice, move twice, attack and move, attack 
and do a special action, or move and do a special action.

related Patterns
n	 A weak static engine can prevent deadlocks in a converter engine.

n	 A static engine can be elaborated by a dynamic engine, a converter engine, or a slow 
cycle pattern.

Dynamic Engine
n	 Type: Engine

n	 Intent: A source produces an adjustable flow of resources. Players can invest 
resources to improve the flow. 

n	 Motivation: A dynamic engine produces a steady flow of resources and opens the 
possibility for long-term investment by allowing the player to spend resources to 
improve production. The core of a dynamic engine is a positive constructive  
feedback loop. 

applicability
Use a dynamic engine when you want to introduce a trade-off between long-term 
investment and short-term gains. This pattern gives the player more control over 
the production rate than a static engine does.

FIGURe b.2
distribution of 
action points in the 
board game Descent: 
Journeys in the Dark
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structure Participants
n	 Energy produced by the dynamic 
engine

n	 A source that produces energy

n	 Upgrades that affect the production 
rate of energy

n	 An invest action that creates 
upgrades

n	 Actions the player can spend on, 
including the invest action

collaborations
The dynamic engine produces energy that is consumed by a number of actions. One 
action (Invest) produces upgrades that improve the energy output of the dynamic 
engine. A dynamic engine allows two different types of upgrades a player can invest 
in to improve its production:

n	 The frequency at which energy is produced

n	 The number of energy tokens generated each time

The differences between the two are subtle. A high frequency will create a steady 
flow, while a high number (but low frequency) will lead to bursts of energy. 

consequences
A dynamic engine creates a powerful positive constructive feedback loop that prob-
ably needs to be balanced by some pattern implementing negative feedback, such 
as any form of friction. Alternatively, balance it by using escalation to create chal-
lenges of increasing difficulty.

When using a dynamic engine, you must be careful not to create a dominant strat-
egy, either by favoring the long-term strategy too much or by making the costs for 
the long-term strategy too high.

A dynamic engine generates a distinct gameplay signature. A game that consists of 
little more than a dynamic engine will cause the players to invest at first, appearing 
to make little progress. Beyond a certain point, the player will start to make more 
progress and needs to try to do so at the quickest possible pace. 

implementation
The chance of building a dominant strategy that favors either long-term or short-
term investment is reduced when some sort of randomness is introduced in the 
dynamic engine. However, the positive feedback loop that exists in an unpredictable 



ptg8274339

desiGn PaTTern LiBrarY 307

A
p

p
E
n

D
Ix

 B

dynamic engine will amplify the luck a player has in the beginning of the game, 
which might result in too much randomness quickly. 

The outcome of random production rates can be, but does not need to be, the same 
for every player. By using an unpredictable dynamic engine that generates the same 
resources for all players, the luck factor is reduced without affecting the unpredict-
ability. This puts more emphasis on the player’s chosen strategy. 

Some dynamic engines allow the player to convert upgrades back into energy, usu-
ally against a lower rate than the original investment. When upgrades are expensive 
and the player frequently needs large amounts of energy, this becomes a viable option.

examples
In StarCraft, one of the abilities of Space Construction Vehicle (SCV) units is to har-
vest minerals that can be spent on creating more SCV units to increase the mineral 
harvest (Figure B.3). In its essence, this is a dynamic engine that propels the game 
(although in StarCraft the number of minerals is limited and SCV units can be killed 
by enemies). It immediately offers the player a long-term option (investing in many 
SCV units) and a short-term option (investing in military units to attack enemies 
quickly or respond to immediate threats). 

The economy of The Settlers of Catan revolves around a dynamic engine affected 
by chance. The roll of the dice determines which game board tiles will produce 
resources at the start of each player’s turn. Building more villages increases the 
chance to receive resources every turn. The player can also upgrade villages into 
cities, which doubles the resource output of each tile. The Settlers of Catan gets 
around the typical signature a dynamic engine creates by allowing different types 
of invest actions and by measuring upgrades instead of energy to determine the 
winner. See the section “Producing Progress Indirectly” in Chapter 11, “Progression 
Mechanisms,” for a more detailed discussion and diagram for The Settlers of Catan.

related Patterns
n	 Dynamic friction and attrition are suitable patterns to counter the long-term ben-
efits of a dynamic engine, while static friction emphasizes the long-term investments.

n	 A dynamic engine elaborates the static engine pattern.

n	 A dynamic engine can be elaborated by the engine building and the worker placement
pattern.

FIGURe b.3
The harvesting of  
minerals in StarCraft.
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Converter Engine
n	 Type: Engine

n	 Intent: Two converters set up in a loop create a surplus of resources that can be 
used elsewhere in the game.

n	 Motivation: Two resources that can be converted into each other fuel a feedback 
loop that produces a surplus of resources. At least one of the converters must output 
more resources than it takes in to create the surplus. The converter engine is a more 
complicated mechanism than most other engines but also offers more opportunities 
to improve the engine. As a result, a converter engine is nearly always dynamic. 

applicability
Use a converter engine when: 

n	 You want to create a more complex mechanism to provide the player with more 
resources than a static or dynamic engine provides. (Our example converter engine 
contains two interactive elements, while the dynamic engine contains only one.) It 
increases the difficulty of the game because the strength and the required invest-
ment of the feedback loop are more difficult to assess. 

n	 You need multiple options and mechanics to tune the profile of the feedback 
loop that drives the engine and thereby the stream of resources that flow into the game. 

structure Participants
n	 Two resources: energy and fuel

n	 A converter that changes fuel into 
energy

n	 A converter that changes energy 
into fuel

n	 Actions that consume energy

collaborations
The converters change energy into fuel and fuel into energy. Normally the player 
ends up with more energy than he started with. 
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consequences
A converter engine introduces the chance of a deadlock. When both resources dry 
up, the engine stops working. Players run the risk of creating deadlocks themselves 
if they forget to invest energy to get new fuel. Combine a converter engine with a 
weak static engine to prevent this from happening. 

A converter engine requires more work from the player, especially when the con-
verters need to be operated manually.

As with dynamic engines, a positive feedback loop drives a converter engine. In most 
cases, this feedback loop needs to be balanced by applying some sort of friction. 

implementation
The number of steps involved in the feedback loop of a converter engine strongly 
affects how hard it is to make it operate efficiently. More steps increase the diffi-
culty; fewer steps reduce the difficulty. At the same time, more steps offer additional 
opportunities for tuning or adding to the engine.

With too few steps in the system, the advantages of the converter engine are limited,  
and you might consider replacing it with a dynamic engine. Too many steps might 
result in an engine that is cumbersome to operate and/or maintain, especially in a  
board game in which the different elements of the engine usually cannot be automated.

It is possible to create an unpredictable converter engine by introducing random-
ness, multiplayer dynamics, or skill into the feedback loop. This complicates the 
converter engine further and often increases the chance that a deadlock will occur. 

Many implementations of the converter engine pattern put a limiter somewhere 
in the cycle to keep the positive engine under control and to keep the engine from 
producing too much energy. For example, if the number of fuel resources that can 
be converted each turn is limited, the maximum rate at which the engine can run 
is capped. In a Machinations diagram, you can use a gate node to limit the flow of 
resources. In an automobile, the car’s engine converts fuel into energy, which drives 
the fuel pump; the fuel pump consumes some of that energy to send more fuel to 
the engine. This creates a positive feedback loop that is limited by the throttle.

examples
The 1980s-era space trading computer game Elite features an economy that occa-
sionally acts as a converter engine. In Elite, every planet has its own market, selling 
and buying various trade goods. Occasionally, players will discover a lucrative trade 
route where they can buy one trade good at Planet A, sell it at a profit at Planet B, 
and return with another good that is in high demand on Planet A again (Figure B.4).  
Sometimes these routes involve three or more planets. Essentially, such a route is 
converter engine. It is limited by the cargo capacity of the player’s ship, which can 
be enlarged for a price. Other properties of the player’s ship might also affect the 
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effectiveness of the converter engine: The ship’s “hyperspeed” range and its capabili-
ties (or cost) to survive a voyage through hostile territories all affect the profitability 
of particular trade routes. Eventually, trade routes become less profitable as the play-
er’s efforts reduce the demand, and thus the price, for certain goods over time (a 
mechanism that is omitted from the diagram).

The player’s location on Planet A or Planet B activates the converters that imple-
ment the trading mechanisms in the center. A few possible ship upgrades are 
included on the right.

A converter engine is at the heart of Power Grid (Figure B.5), although one of the 
converters is replaced by a more elaborate structure (see the section “Elaboration 
and Nesting Patterns” in Chapter 7, “Design Patterns”). The players spend money 
to buy fuel from a market and use that fuel to generate money in power plants. 
The fiction of the game is that players generate and sell electricity. However, the 
game mechanics do not model electricity itself; players simply convert fuel directly 
into money. Surplus money is invested in more efficient power plants and con-
necting more cities to the player’s power network. The converter engine is limited: 
The player can earn money only for every connected city, which effectively caps 
the money output during a turn. Power Grid also has a weak static engine to prevent 
deadlocks: The player will collect a small amount of money during a turn even if 
the player failed to generate money through power plants. The converter engine of 
Power Grid is slightly unpredictable as players can drive up the price of fuel by stock-
piling it, which acts as a stopping mechanism at the same time.

FIGURe b.4
Travel and trade  
in Elite



ptg8274339

desiGn PaTTern LiBrarY 311

A
p

p
E
n

D
Ix

 Brelated Patterns
n	 A converter engine is well suited to be combined with the engine building pattern 
because there are many opportunities to change the settings of the engine: the con-
version rate of two converters and possibly the setting of a limiter.

n	 The positive feedback a converter engine creates is best balanced by introducing 
some sort of friction.

n	 A converter engine elaborates the static engine pattern.

n	 A converter engine can be elaborated by the engine building and the worker place-
ment pattern.

Engine Building
n	 Type: Engine

n	 Intent: A significant portion of gameplay is dedicated to building up and tuning 
an engine to create a steady flow of resources.

n	 Motivation: A dynamic engine, converter engine, or a combination of different 
engines form a complex and dynamic core of the game. The game includes at least 
one, but preferably multiple, mechanics to improve the engine. These mechanics 
can involve multiple steps. For the engine building pattern to generate interesting 
gameplay, it should not be trivial for the player to assess the state of the engine.

applicability
Use engine building when: 

n	 You want to create a game that has a strong focus on building and construction. 

n	 You want to create a game that focuses on long-term strategy and planning. 

FIGURe b.5
The production  
mechanism in Power 
Grid. The converter 
engine is in blue.
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structure

Participants
n	 The core engine usually is a complex structure combining multiple engine types.

n	 At least one, but usually multiple, building mechanisms to improve the core 
engine.

n	 Energy is the main resource produced by the core engine. 

collaborations
Building mechanisms increase the output of the engine. If energy is required to acti-
vate building mechanisms, then a positive, constructive feedback loop is created. 

consequences
The engine building increases the difficulty of a game. It is best suited to slower-
paced games because it involves planning and strategic decisions.

implementation
Including some form of unpredictability is a good way to increase difficulty, gener-
ate varied gameplay, and avoid dominant strategies. Engine building offers many 
opportunities to create unpredictability because the core engine tends to consist 
of many mechanisms. The complexity of the core engine itself usually also causes 
some unpredictability. 

When using the engine building pattern with feedback, it is important to make sure 
the positive, constructive feedback is not too strong and not too fast. In general, you 
want to spread out the process of engine building over the entire game.

NOT E The structure 
of the core engine is 
an example. There is 
no fixed way of build-
ing the engine. engine 
building requires only 
that several building 
mechanics operate on 
the engine and that 
the engine produces 
energy.
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An engine building pattern operates without feedback when energy is not required 
to activate building mechanisms. This can be a viable structure when the engine 
produces different types of energy that affect the game differently and allows the 
players to follow different strategies that favor particular forms of energy above oth-
ers. However, it usually does require that the activation of building mechanisms is 
restricted in some way.

The upgrade mechanism in a dynamic engine pattern also is an example of a building 
mechanism. In fact, the dynamic engine is a simple and common implementation 
of an engine building pattern. However, its simplicity means that a dynamic engine
allows only one or maybe two kinds of upgrades. The typical core engines in a game 
that follow the engine building pattern allow for many more upgrade options.

examples
SimCity is a good example of engine building. The energy in SimCity is money, which  
is used to activate most building mechanisms. The mechanisms consist of prepar-
ing building sites, zoning, building infrastructure, constructing special buildings, 
and demolition. The core engine of SimCity is quite complex with many internal 
resources such as people, job vacancies, power, transportation capacity, and three 
different types of zones. Feedback loops within the engine cause all sorts of friction 
and effectively balance the main positive feedback loop, up to the point that the 
engine can collapse if the player is not careful and manages the engine poorly.

In the board game Puerto Rico, each player builds up a New World colony. The colony  
generates different types of resources that can be reinvested or converted into victory 
points. The core engine includes many elements and resources such as plantations, 
buildings, colonists, money, and a selection of different crops. Puerto Rico is a mul-
tiplayer game in which the players compete for a limited number of positions that 
allow different actions to improve the engine; they compete for different building 
mechanics. This way, a strong multiplayer dynamic is created that contributes much 
of its gameplay.

related Patterns
n	 Applying multiple feedback to the building mechanisms is a good way to increase 
the difficulty of the engine building pattern.

n	 All friction patterns are suitable to balance the typical positive feedback created 
by an implementation of engine building that consumes energy to activate building 
mechanisms.

n	 The dynamic engine is one of the simplest possible implementations of an engine 
building pattern. 

n	 The engine building pattern elaborates the dynamic engine and converter engine patterns.

n	 The engine building pattern can be elaborated by the worker placement pattern.
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Static Friction
n	 Type: Friction

n	 Intent: A drain automatically consumes resources produced by the player.

n	 Motivation: The static friction pattern counters a production mechanism by 
periodically consuming resources. The rate of consumption can be constant or sub-
jected to randomness.

applicability
Use static friction when: 

n	 You want to create a mechanism that counters production but can eventually be 
overcome by the players. 

n	 You want to exaggerate the long-term benefits from investing in upgrades for a 
dynamic engine.

structure Participants
n	 A resource: energy

n	 A static drain that consumes energy

n	 A production mechanism that pro-
duces energy

n	 Other actions that consume energy

collaborations
The production mechanism produces energy that players need to use to perform 
actions. The static drain consumes energy outside players’ direct control.

consequences
The static friction pattern is a relatively simple way to counter positive feedback 
created by engine patterns. However, it tends to emphasize the long-term strategy 
inherent to the dynamic engine because it reduces the initial output of the dynamic 
engine but does not affect any upgrades.

implementation
An important consideration when implementing static friction is whether the con-
sumption rate is constant or subject to some sort of randomness. Constant static 
friction is the easiest to understand and most predictable, whereas random static 
friction can cause more noise in the dynamic behavior of the game. The latter can 
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be a good alternative to using randomness in the production mechanism. The fre-
quency of the friction is another consideration: When the feedback is applied at 
short intervals, the overall system will be more stable than when the feedback is 
applied at long or irregular intervals, which might cause periodic behavior in the 
system. In general, the effects of a continual loss of energy on the dynamic behavior 
of the system are less powerful than a periodic loss of the same amount of energy.

examples
In the Roman city-building game Caesar III, the player must pay tribute to the 
emperor at particular moments during each mission. The schedule of the tribute 
payments is fixed for each mission and not affected by the player’s performance. 
In effect, they cause a very infrequent and high form of static friction that causes a 
huge tremor in the game’s internal economy. See Chapter 9, “Building Economies,” 
for a more detailed discussion of this game.

The dynamic engine in Monopoly is countered by different types of friction, includ-
ing static friction (Figure B.6). The main mechanism that implements static friction 
is the Chance cards through which the player infrequently loses money. Although 
some of these cards take into account the player’s property, most of them do not. 

You might think that paying rent to other players is also a form of static friction because 
the frequency and severity of the payments are far beyond the direct control of the  
player who has to pay. However, paying rent is an example of the attrition pattern, not  
static friction. The rate of the friction does change over time, and players have some 
indirect effect on it: When a player is doing well, chances are that his opponents 
are not, which negatively affects this friction. The diagram in Figure B.8 does not 
include this aspect because it is made from the viewpoint of an individual player.

related Patterns
n	 Static friction exaggerates long-term investments, and therefore it is best suited to   
be used in combination with a static engine, converter engine, or an engine building pattern.

n	 Static friction is elaborated by the dynamic friction or the slow cycle pattern.

FIGURe b.6
static friction in 
Monopoly
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Dynamic Friction
n	 Type: Friction

n	 Intent: A drain automatically consumes resources produced by the player; the 
consumption rate is affected by the state of other elements in the game.

n	 Motivation: Dynamic friction counteracts production but adapts to the perfor-
mance of the player. Dynamic friction is a classic application of negative feedback in 
a game. 

applicability
Use dynamic friction when: 

n	 You want to balance games in which resources are produced too fast. 

n	 You want to create a mechanism that counters production and automatically 
scales with players’ progress or power. 

n	 You want to reduce the effectiveness of long-term strategies created by a dynamic 
engine in favor of short-term strategies.

structure

Participants
n	 A resource: energy

n	 A dynamic drain that consumes energy

n	 A production mechanism that produces energy

n	 Other actions that consume energy

collaborations
The production mechanism produces energy that players need to perform actions. 
The dynamic drain consumes energy outside players’ direct control but is affected 
by the state of at least one other element in the game system.
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consequences
Dynamic friction is a good way to counter positive feedback created by engine pat-
terns. Dynamic friction adds a negative feedback loop to the game system.

implementation
There are several ways of implementing dynamic feedback. An important consid-
eration is the choice of the element that causes the consumption rate to change. 
In general, this can be either the amount of available energy itself, the number of 
upgrades to a dynamic engine or a converter engine, or the player’s progress toward a 
goal. When the amount of available energy changes the friction, the negative feed-
back tends to be fast. When progress or production power is the cause, the feedback 
is more indirect and probably slower. 

When dynamic friction is used to counter a positive feedback loop, it is important 
to consider the difference in characteristics of the positive feedback loop and the 
negative feedback loop implemented through the dynamic friction. When the char-
acteristics are similar (equally fast, equally durable, and so on), the effect is far more 
stable than when the differences are large. For example, when a slow and durable 
dynamic friction is acting against a fast but nondurable positive feedback that ini-
tially yields a good return, players will initially make a lot of progress but might 
suffer in the long run. Fast positive feedback and slow negative feedback seems to be 
the most frequently encountered combination.

examples
The mechanics of tower defense games typically revolve around a dynamic drain 
on the player’s life points caused by enemies that the player must keep under con-
trol by building towers (Figure B.7). In this case, the goal of the game is to prevent 
dynamic friction from taking effect. In real tower defense games, placing the right 
types of towers involves a strategy that is omitted from this diagram.

FIGURe b.7
dynamic friction in 
tower defense games
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Dynamic friction is used in the city production mechanism in Civilization (Figure B.8). 
In this game, the player builds cities to produce food, shields, and trade. As cities 
grow, they need more and more food for their own population. Players have some 
control over how much food is produced compared with other resources, but the 
players’ options are limited by the surrounding terrain. By choosing to produce a lot 
of food early, cities initially produce fewer other resources but grow faster because 
of great potential. Fast growth creates a problem, however, because the happiness 
rating of a city must stay equal to or higher than half the population, or else the 
production stops due to of civil unrest. Initially, a city has a happiness value of two. 
Players can create more happiness by building special buildings or by converting trade  
into culture. Both approaches cause more dynamic friction with different profiles on 
the production process. Constructing special buildings is slow and requires a high 
investment but is highly durable and has a relatively high rate of return. Converting 
trade to culture is fast but has a relatively low return for the investment required.

related Patterns
n	 Dynamic friction is a good way to balance any pattern that causes positive feed-
back and often is part of the multiple feedback pattern.

n	 Attrition elaborates dynamic friction that is the result of multiplayer interaction.

n	 Dynamic friction is elaborated by a stopping mechanism.

FIGURe b.8
The city economy of 
Civilization. dynamic 
friction mechanisms 
are printed in color. 
The player can freely 
adjust the culture and 
research settings to 
control unrest and 
research production. 
These settings are 
global and affect all 
cities equally.
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Stopping Mechanism
n	 Type: Friction

n	 Intent: Reduce the effectiveness of a mechanism every time it is activated. 

n	 Also known as: Law of diminishing returns.

n	 Motivation: To prevent a player from abusing a powerful mechanism, the mech-
anism’s effectiveness is reduced every time it is used. In some cases, the stopping 
mechanism is permanent, but usually it’s not. 

applicability
Use a stopping mechanism when: 

n	 You want to prevent players from abusing particular actions. 

n	 You want to counter dominant strategies. 

n	 You want to reduce the effectiveness of a positive feedback mechanism.

structure

Participants
n	 An action that might produce some sort of output

n	 A resource energy that is required for the action

n	 The stopping mechanism that increases the energy cost or reduces the output  
of the action

collaborations
For a stopping mechanism to work, the action must have an energy cost, produce 
resources, or both. The stopping mechanism reduces the effectiveness of an action 
mechanism every time it is activated by increasing the energy costs or reducing  
the output of resources.
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consequences
Using a stopping mechanism can reduce the effect of a positive feedback loop con-
siderably and even make its return insufficient.

implementation
When implementing a stopping mechanism, it is important to consider whether to 
make the effects permanent. When the accumulated output is used to measure the 
strength of the stopping mechanism, the effects are not permanent. In that case, it 
requires players to alternate frequently between creating the output and using the 
output in other actions. 

A stopping mechanism can apply to each player individually or can affect multiple 
players equally. In the latter case, the game will reward players that use the action 
before other players do. This means that the stopping mechanism can create a form 
of feedback depending on whether leading or trailing players are likely to act first.

examples
A subtle stopping mechanism can be found in the timber-harvesting mechanism 
in Warcraft III. In Warcraft III, players can assign peasants to cut wood and produce 
lumber. Because the peasants have to transport the lumber back from the forest to 
the player’s base and cannot cut wood while transporting, the distance to the forest 
has an effect on effectiveness of the production mechanism. Because cutting wood 
clears the forest, the distance increases as the player cuts more and more wood. 
Figure B.9 represents these mechanics.

The price mechanism of the fuel market in Power Grid involves a stopping mecha-
nism (Figure B.10). In Power Grid, players use money to buy fuel and burn fuel to 
generate money. This positive feedback loop is counteracted by the fact that buying 
a lot of fuel actually drives up the price for all players. Because the leading player 
acts last in Power Grid, this stopping mechanism causes powerful negative feedback 
for the leading player. 

FIGURe b.9
The stopping mecha-
nism in Warcraft III: 
The production rate for 
each peasant will drop 
to 0.4 when the forest 
is almost cleared.
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 Brelated Patterns
n	 Stopping mechanisms are often found in systems that implement multiple feedback.

n	 A stopping mechanism elaborates the dynamic friction pattern.

n	 A stopping mechanism might be elaborated by a slow cycle pattern.

Attrition
n	 Type: Friction

n	 Intent: Players actively steal or destroy resources of other players that they need 
for other actions in the game.

n	 Motivation: By allowing players to directly steal or destroy each other’s 
resources, players can eliminate each other in a struggle for dominance.

applicability
Use attrition when: 

n	 You want to allow direct and strategic interaction between multiple players. 

n	 You want to introduce feedback into a system whose nature is determined by the 
strategic preferences and/or whims of the players.

FIGURe b.10
The stopping mecha-
nism in Power Grid 
drives up the price 
of fuel and causes 
negative feedback, 
especially for leading 
players.



ptg8274339

322 Game mechanics: advanced Game desiGn

structure

Participants
n	 Multiple players who have the same (or similar) mechanics and options.

n	 A strength resource. A player who loses all his strength is eliminated from the 
game.

n	 A special attack action that drains or steals the other player’s strength.

collaborations
By performing attack actions, players can drain each other’s strength. Attacking 
may, or may not, cost strength to perform. If attacking doesn’t cost strength, it 
should require time to perform or involve some measure of skill or randomness. 
The balance between the attack costs, its effectiveness, and how beneficial the other 
actions in the game are determine the effectiveness of the attack and the dominance 
of the attrition pattern.

consequences
Attrition introduces a lot of dynamism into a system because players directly control 
the measure of the destructive force applied to each other. Often, this introduces 
destructive feedback because the current state of a player will cause reactions by 
other players. Depending on the nature of the winning conditions and the current 
state of the game, this feedback might be negative when it stimulates players to act 
and conspire against the leader, but it also might cause positive feedback when play-
ers are stimulated to attack and eliminate weaker players. 

implementation
For attrition to work well, players should be required to invest some sort of resource 
in attacking that could also be spent otherwise. If they don’t have to make this 
investment, in a two-player game attrition simply becomes a race to destroy the 
opponent with few or no strategic choices. In a multiplayer game that facilitates 
social interaction between the players, attacking without investment works a little 
better because the players need to choose whom to attack.

NOT E remember that 
the terms constructive
and destructive
describing feedback 
are not the same as 
positive and negative. 
see the section 
“seven Feedback 
characteristics” in 
chapter 6, “common 
mechanisms,” for an 
explanation of the 
distinction.
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It is quite common to implement attrition using two resources, life and energy, instead 
of just one, strength. Players use energy to perform actions and lose the game when 
they run out of life. When using these two resources, it is important that they be 
somehow related. Often, players are allowed to spend energy to gain more life. 
Sometimes the relationship between life and energy is implicit. For example, when 
a player must choose between spending energy or gaining life, there is an implicit 
link between the two because players generally cannot do both at the same time.

In a two-player version of attrition, the game must include other actions, and  
games for more than two players often allow other actions that the players can  
perform. Most of the time these actions constitute some sort of production mech-
anism for strength, which increases the effectiveness the players’ defensive or 
offensive capabilities (and thus elaborates the attrition pattern to an arms race  
pattern). Most real-time strategy games include all these options, often with mul-
tiple variants for each.

The winning conditions and effects of eliminating another player have a big impact 
on the attrition pattern. The winning condition does not need to be elimination, 
however. Players might score points, or reach a particular goal outside the attrition 
pattern, which automatically widens the number of strategies available. When there 
is a bonus for attacking or eliminating players, the pattern can be made to stimulate 
the elimination of weaker players.

examples
The trading card game Magic: The Gathering implements an elaborate version of the 
attrition pattern. Figure B.11 presents this implementation, although it shows the 
details from the perspective of a single player only. 

FIGURe b.11
The attrition mecha-
nism in Magic: The 
Gathering
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In Magic: The Gathering, players can play one card every turn. These cards allow 
players to add lands, summon creatures, cast spells to heal, or deal direct damage to 
their opponent or their opponent’s creatures. But all actions except playing lands 
cost mana (magical energy). The more mana players have, the more they can spend 
each turn and the more powerful actions they can play. Creatures will fight other 
creatures, and when there are no more enemy creatures, they will damage the oppo-
nent directly. Players who lose all their life points are eliminated from the game. 
Magic: The Gathering is an example of a game that implements attrition using sepa-
rate resources for life and energy (or in this case, life and mana).

The different gameplay options in Magic: The Gathering illustrate how attrition can 
work differently. Direct damage briefly triggers a drain. As its name implies, it is fast 
and direct. On the other hand, summoning creatures activates a permanent drain 
on the opponent’s creatures and life. The effects usually are not as powerful as direct 
damage, but because they accumulate over time, they can be quite devastating. The 
cards in the player’s hand determine which options are available to him and exactly 
how powerful those options are. Because players build their own decks from a large 
collection of cards, deck building is an important aspect of Magic: The Gathering. 

The most obvious way to implement attrition is in a symmetrical game. However, 
many single-player games and even certain types of multiplayer games use asym-
metrical attrition. An example of asymmetrical attrition can be found in the board 
game Space Hulk in which one player, controlling a handful of space marines, tries 
to accomplish a mission while the other player, controlling an unlimited supply of 
alien “genestealers,” tries to prevent that. The genestealer player tries to reduce the 
number of space marines to stop them from accomplishing their goals and wins 
when the genestealers have destroyed enough space marines. The space marine 
player usually cannot win by destroying genestealers but must keep the number of 
genestealers under control to survive, because the genestealers become more effec-
tive as their numbers grow. Figure B.12 is a rough illustration of the mechanics in 
Space Hulk.

FIGURe b.12
asymmetrical attrition 
in Space Hulk
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related Patterns
n	 Attrition works well with any sort of engine pattern. Trade can be used as an alter-
native form of multiplayer feedback that is constructive instead of destructive and is 
nearly always negative.

n	 Attrition elaborates the dynamic friction pattern.

n	 Attrition can be elaborated by the arms race and worker placement patterns.

Escalating Challenge
n	 Type: Escalation

n	 Intent: Progress toward a goal increases the difficulty of further progression.

n	 Motivation: A positive feedback loop between player progress and the game’s dif-
ficulty makes the game increasingly harder for players as they get closer to achieving 
their goals. This way, the game quickly adapts to the player’s skill level, especially 
when the good performance allows the player to progress more quickly.

applicability
Use escalating challenge when: 

n	 You want to create a fast-paced game based on player skill (usually physical skill) 
in which the game gets harder as the player advances; his ability to complete tasks is 
inhibited as he goes.

n	 You want to create emergent mechanics that (partially) replace predesigned  
level progression.

structure
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Participants
n	 Targets represent unresolved tasks.

n	 Progress represents the player’s progress toward a goal.

n	 A task either reduces the number of targets or produces progress.

n	 A feedback mechanism makes the game more difficult as the player progresses 
toward the goal or reduces the number of targets. 

collaborations
The task reduces targets, produces progress, or does both. The feedback mechanic 
increases the difficulty of the task as the player gets closer to achieving the goal. 

consequences
Escalating challenge is based on a simple positive feedback loop affecting the dif-
ficulty of the game. Its mechanism quickly adjusts the difficulty of the game to the 
skill level of the player. If failure at the task ends the game, escalating challenge 
ensures a very quick game.

implementation
The task in a game that implements the escalating challenge pattern is typically 
affected by player skill, especially when the escalating challenge pattern makes up 
the most of the game’s core mechanics. When the task is a random or determin-
istic mechanic, players will have no control over the game’s progress. Only when 
the escalating challenge pattern is part of a more complex game system and play-
ers have some sort of indirect control over the chance of success does a random or 
deterministic mechanic become viable. Using multiplayer dynamic mechanisms is 
an option but probably works better in a more complex game system as well.

examples
Space Invaders is a classic example of the escalating challenge pattern. In Space 
Invaders, the player needs to destroy all the invading aliens before they can reach 
the bottom of the screen. Every time the player destroys an alien, all other aliens 
speed up a little, making it more difficult for the player to shoot them.

Pac-Man is another example. In Pac-Man, the task is to eat all the dots in a level, while 
the chasing ghosts make it more and more difficult to get to the last remaining dots 
(see Chapter 5, “Machinations,” for a detailed discussion and diagram of Pac-Man).

related Patterns
By combining escalating challenge with static friction or dynamic friction, a game can 
be created that quickly matches its difficulty to the ability of the player.



ptg8274339

desiGn PaTTern LiBrarY 327

A
p

p
E
n

D
Ix

 B

Escalating Complexity
n	 Type: Escalation

n	 Intent: Players act against growing complexity, trying to keep the game under 
control until positive feedback grows too strong and the accumulated complexity 
makes them lose.

n	 Motivation: Players are tasked to perform an action that grows more complex 
if the players fail and in which complexity contributes to the difficulty of the task. 
As long as players can keep up with the game, they can keep on playing, but once 
the positive feedback spins out of control, the game ends quickly. As the game pro-
gresses, the mechanism that creates the complexity speeds up, ensuring that at some 
point players can no longer keep up and eventually must lose the game.

applicability
Use escalating complexity when: 

n	 You aim for a high-pressure, skill-based game. 

n	 You want to create emergent mechanics that (partially) replace predesigned  
level progression.

structure Participants
n	 The game produces complexity that 
must be kept under a certain limit by the 
player.

n	 A task performed by the player 
reduces complexity.

n	 A progress mechanism increases 
the production of complexity over 
time. 

collaborations
Complexity immediately increases the production of more complexity, creating 
a strong positive feedback loop that must be kept under control. The player loses 
when complexity exceeds his ability to manage it.
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consequences
Given enough skill, players can keep up with the increase in complexity for a long 
time, but when players no longer keep up, complexity spins out of control and the 
game ends quickly.

implementation
The task in a game that implements the escalating complexity pattern is typically 
affected by player skill, especially when escalating complexity makes up most of the 
game’s core mechanics. When the task is governed by a random or deterministic 
mechanism, players will have no control over the game’s progress. Random or deter-
ministic mechanics work a little better in more complex game systems in which 
players have some control over their chance of success. Using a multiplayer task is 
an option, but it probably also works better in a more complex game system.

Randomness in the production of complexity creates a game with a varied pace, 
where players might struggle to keep up with production at its peak but get a chance 
to catch their breath when complexity production slows down a little.

There are many ways to implement the progress mechanic, from a simple time-
based increase of the production of complexity (as is the case in the previous sample 
structure) to complicated constructions that rely on other actions by the player or 
by other players. This way, it is possible to combine escalating complexity with esca-
lating challenge by introducing positive feedback to the progress mechanic as a result 
of the execution of the task.

Escalating complexity lends itself well to serve as part of a multiple feedback structure 
in which the complexity feeds into several feedback loops with different signatures. 
For example, escalating complexity can be partially balanced by having the task feed 
into a much slower negative feedback loop governing the production of complexity.

examples
In Tetris, a steady flow of falling tetrominoes produces complexity. There is a slight 
randomness in this production as the different types of tetrominoes are created 
over time. Players need to place the tetrominoes in such a way that they fit together 
closely. When a line is completely filled, it disappears, making room for new tetro-
minoes. When players fail to keep up, the tetrominoes pile up quickly, and they will 
have less time to place subsequent tetrominoes. This can quickly increase the com-
plexity of the field when players are not careful and cause them to lose the game 
if the pile of tetrominoes reaches the top of the screen. In Tetris, levels create the 
progression mechanism. Every time the player clears ten lines, the game advances to 
the next level and the tetrominoes start falling faster, making it more and more dif-
ficult to place them accurately. In this case, the level mechanism is also an example 
of the escalating challenge pattern.

Figure B.13 represents these mechanics of Tetris. In this diagram, tetrominoes are  
converted into points. The number of points goes up when there are more tetrominoes 
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in the game. This represents the possibility to clear more lines at once and enables a 
high-risk, high-reward strategy. The chart in Figure B.13 clearly shows that once the 
pace grows too great for the player to keep up, the game rapidly spins out of control.

In the independently developed action shooter Super Crate Box, players are required 
to pick up crates containing different weapons, while keeping the number of ene-
mies under control by shooting them. As soon as the player touches an enemy, he is 
killed. Enemies spawn at the top of the screen and run down the level to disappear 
at the bottom. An enemy that makes it to the bottom respawns at the top of the 
screen but moves much faster the second time. The player carries only one weapon 
at a time, and not all weapons are equally powerful. However, because the only way 
to get ahead is to pick up crates and change weapons, the player is forced to make 
the best use of whatever he picks up. The player has to alternate between killing 
enemies to keep their numbers under control and picking up boxes to score more 
points. Figure B.14 represents a diagram for Super Crate Box.

FIGURe b.13
escalating complexity 
in Tetris

FIGURe b.14
Super Crate Box has 
the players alter-
nate between scoring 
points and keeping 
enemy numbers under 
control.
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related Patterns
n	 Any type of engine pattern can be used to implement the progress mechanism.

n	 It is common to find the progression mechanism implemented as an escalating 
challenge pattern.

Arms Race
n	 Type: Escalation

n	 Intent: Players can invest resources to improve their offensive and defensive 
capabilities against other players.

n	 Motivation: Allowing players to invest in their offensive and defensive capa-
bilities introduces many strategic options into the game. The player can choose 
strategies that fit his skills and preferences.

applicability
Use arms race when:

n	 You want to create more strategic options or avoid dominant strategies in games 
that use the attrition pattern.

n	 You want to lengthen the playing time of your game.

n	 You want to encourage players to develop strategies and playing styles that suit 
their individual skills and preferences.

structure
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Participants
n	 Multiple players that can activate the same (or similar) attack mechanisms.

n	 A strength resource. A player that loses all his strength is eliminated from the 
game.

n	 An optional energy resource that is consumed by upgrades. In some cases, energy 
and strength are the same.

n	 At least one upgrade mechanisms to improve the offensive or defensive capabil-
ities of each player.

collaborations
The attack mechanisms allow players to drain or steal each other’s strength. 
Activating the attack and upgrade mechanisms require the player to invest energy or 
time. The upgrade mechanisms improve the player’s offensive or defensive capabili-
ties or restore the player’s strength.

consequences
Arms race introduces many strategic options for players to explore, which can  
make the game difficult to balance. In general, it is best to implement an intransi-
tive (rock-paper-scissors) mechanism in the upgrade options so that every strategy 
has a counter-strategy. For example in many medieval war games, heavy infantry 
beats cavalry, while cavalry beats artillery, and artillery beats infantry. In this case, 
the best strategy and most effective army composition is partially determined by  
the choices made by your opponent.

Many strategic options allow players to develop their own playing styles and strate-
gies. For example, if a player likes a particular mechanism, she can use it more often, 
while if she dislikes a mechanism, she might ignore it.

Using an arms race pattern typically lengthens a game, because players always have 
the option to play defensively at first. This can even delay confrontation and con-
flict for a long time. 

implementation
What resources are required to pay for upgrades is an important design decision 
when implementing an arms race. When strength and energy are the same, the 
player might over-invest and make himself vulnerable, especially if the upgrades 
take time to take effect. When energy is separate from strength, you need to con-
sider carefully what the relationship between strength and energy actually is. 
Strength might determine the production rate of energy. This would create a strong 
positive, destructive feedback loop. Energy might also be converted into strength, or 
energy might be invested to produce strength over time. There are many options.
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A good way to prevent an arms race from lengthening the game too much is to 
make the resource to activate upgrades heavily contested, either because all players 
are trying to harvest the same resources or because upgrades require the player to 
invest strength.

An arms race doesn’t have to be symmetrical. It is possible to create an arms race 
with two different sides, although this would be more difficult to balance.

examples
Many real-time strategy games implement the arms race pattern. For example, 
StarCraft II and Warcraft III allow the player to investigate technology to improve the 
fighting capabilities of his units. In these games, strength is measured as the sum of 
the player’s units and buildings, whereas energy is harvested by worker units and is 
used to upgrade and build new units.

An arms race is also often found in tower defense games, although in those games 
it is an asymmetrical implementation of the pattern. For example, the green and 
blue mechanisms in Figure B.15 represent two different mechanisms that increase 
the offensive capacities of the player (blue) and the enemies (green). In most tower 
defense games, there are many more upgrade mechanisms: Players can upgrade tow-
ers or choose between different towers for different effects, while the enemy waves 
will include other types of enemies that require a different type of response by the 
player. 

related Patterns
n	 Arms race combines well with a dynamic engine to produce energy and strength. 
This combination is found in many real-time strategy games.

n	 Arms race elaborates the attrition pattern.

n	 Arms race can be elaborated by the worker placement pattern.

FIGURe b.15
an asymmetrical  
arms race in a tower 
defense game
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Playing Style Reinforcement
n	 Type: Miscellaneous

n	 Intent: By applying slow, positive, constructive feedback on player actions, the 
game encourages specialization and gradually adapts to the player’s preferred play-
ing style.

n	 Also Known As: Role-playing game (RPG) elements.

n	 Motivation: Slow, positive, constructive feedback on player actions (actions that 
have another effect on the game) causes the player’s avatar or units to develop over 
time. As the actions themselves feed back into this mechanism, the avatar or units 
specialize over time, getting better at performing a particular task. As long as there 
are multiple viable strategies and specializations, the avatar and the units will, in 
time, reflect the player’s preferences and style.

applicability
Use playing style reinforcement when: 

n	 You want players to make a long-term investment in the game that spans mul-
tiple play sessions. 

n	 You want to reward players for building, planning ahead, and developing per-
sonal strategies. 

n	 You want players to grow into a specific role or strategy. 

structure
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Participants
n	 Actions players can perform whose success depends in part on the attributes of 
the player’s character or the units involved in the action.

n	 A resource ability that affects the chance that actions succeed and that can grow 
over time.

n	 An optional resource experience points that can be used to increase an ability. 
Some games call these skill points and include a different resource called experience 
points that cannot be traded.

collaborations
n	 Ability affects the success rate of actions.

n	 Attempting actions generates experience points or directly improves abilities. 
Some games require the action to be successful, while others do not.

n	 Experience points might be spent to improve abilities. 

consequences
Playing style reinforcement works best in games that are played over multiple ses-
sions and over a long time.

Playing style reinforcement works well only when multiple strategies and play styles 
are viable options in the game. When there is only one, or only a few, all the players 
will use the same strategy, which makes the game uninteresting.

Playing style reinforcement can inspire min-maxing behavior with players. This 
refers to a strategy in which players seek the best possible options that will allow 
them to gain powerful avatars or units as fast as possible. If min-maxing is success-
ful, it usually becomes a dominant strategy. This can happen when the strength of 
the feedback is not distributed evenly over all actions and strategies.

Playing style reinforcement favors experienced players over inexperienced players, 
because the experienced ones will have a better understanding of their options and 
the long-term consequences of their actions.

Playing style reinforcement rewards the player who can invest the most time in 
playing the game. In this case, time spent playing can compensate for different lev-
els of skill among players, which can be a wanted or an unwanted side-effect.

It can be ineffective for a player to change strategies over time in a game with 
playing style reinforcement, because the player will lose the benefit of previous 
investments in another play style.
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implementation
Whether or not to use experience points is an important decision when imple-
menting play style reinforcement. When using experience points, there is no direct 
coupling between growth and action, allowing the player to harvest experience 
with one strategy to develop the skills to excel in another strategy. On the other 
hand, if you do not use experience points, you have to make sure that the feedback 
is balanced for the frequency of the actions; actions that are performed more often 
should have weaker feedback than actions that can be practiced infrequently.

Role-playing games are the quintessential example of games built around the play 
style reinforcement pattern. In these games, the feedback loops are generally quite 
slow and balanced by an escalating challenge, dynamic friction, or a stopping mechanism  
to make sure avatars do not progress too fast. In fact, most of these games are balanced 
in such a way that progression is initially fast and gradually slows down, usually 
because the required investment of experience points increases exponentially.

You must also decide whether the action needs to be executed successfully to gener-
ate the feedback. How you decide this issue can dramatically affect player behavior. 
When success is required, the feedback loop gains influence. In that case, it is proba-
bly best to have the difficulty of the player’s tasks also affect the success of an action 
and to challenge the player with tasks of varying difficulty levels, thus allowing 
them to train their avatars. When success is not required to earn experience points, 
players have more options to improve neglected abilities during later and more dif-
ficult stages. However, it might also encourage players to perform a particular action 
at every conceivable opportunity, which could lead to some unintended, unrealistic, 
or comic results, especially when the action involves little risk.

examples
Many pen-and-paper role-playing games implement playing-style reinforcement. 
For example, in Warhammer Fantasy Role-Play and Vampire: The Masquerade, play-
ers are awarded experience points for achieving goals in the game. They can spend 
experience points on improving their character’s abilities. Curiously, the original 
role-playing game Dungeons & Dragons doesn’t have playing-style reinforcement. In 
Dungeons & Dragons, players are awarded experience points that they need to accu-
mulate to advance to the next level. However, the player has no influence over how 
her character’s abilities improve when she levels up; the character’s abilities do not 
adapt to the playing style or preferences of the player.

In the computer role-playing game The Elder Scrolls IV: Oblivion, the avatar’s progress 
is directly tied to her actions. The avatar’s ability corresponds directly to the number 
of times she has performed the associated actions. Oblivion implements playing-style 
reinforcement without experience points.
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In Civilization III, there are different ways in which a player can win the game.  
A player reinforces his chosen strategy of military, economic, cultural, or scientific 
dominance (or any combination) by building city improvements and wonders of 
the world that favor that strategy. In Civilization III, several resources take the role of 
experience points; money and production are prominent examples. These resources 
are not necessarily tied to one particular strategy in the game. Money generated by 
one city can be spent to improve production in another city in the game.

related Patterns
When playing style reinforcement depends on the success of actions, it creates a 
powerful feedback. In that case, a stopping mechanism is often used to increase the 
price of new upgrades to an ability. 

Multiple Feedback
A full description of the multiple feedback pattern is included in the online version of 
Appendix B, which you can find at www.peachpit.com/gamemechanics.

Trade
A full description of the trade pattern is included in the online version of Appendix B,  
which you can find at www.peachpit.com/gamemechanics.

Worker Placement
A full description of the worker placement pattern is included in the online version of 
Appendix B, which you can find at www.peachpit.com/gamemechanics.

Slow Cycle
A full description of the slow cycle pattern is included in the online version of 
Appendix B, which you can find at www.peachpit.com/gamemechanics.

www.peachpit.com/gamemechanics
www.peachpit.com/gamemechanics
www.peachpit.com/gamemechanics
www.peachpit.com/gamemechanics
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Getting started  
with Machinations
You can create and simulate Machinations diagrams in the Machinations Tool, a 
graphical editor and simulator created by Joris Dormans. Appendix C, which you 
can find online at www.peachpit.com/gamemechanics, contains a tutorial that will get 
you up to speed creating diagrams in the tool. In the tutorial you will learn about the 
user interface of the tool, and we’ll show you, step by step, how to create a diagram.
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400 Project, 150

A
abstraction

elimination, 286–287
in Machinations diagrams, 

81–82
process of, 286–287
simplification, 286–287
in simulations, 286–287

action games
level progression, 131
mechanics, 8
power-ups and collectibles in, 

131–133
actions

challenges associated with, 
43–44

effect of, 43
unexpected, 44

Adams, Ernest
definition of games, 1
Fundamentals of Game Design, 

59
hierarchy of challenges, 229
player-centric design, 169, 292

adventure games, mechanics, 8
Alexander, Christopher, 148
America’s Army, 287, 299
analogous simulation, 288–289, 

291–293
Angry Birds, 31

physics, 6
strategy in, 10
vs. World of Goo, 10–11

AP (artificial player). See artificial 
players; players

arms race pattern
applicability, 330
collaborations, 331
consequences, 331
examples, 332
implementation, 331–332
intent, 330
participants, 331
related patterns, 332

structure, 330
type, 330

Art of Computer Game Design, 232
artificial players. See also direct 

commands; Machinations 
diagrams; players

activate(parameter) command, 
175

adding to Machinations 
diagrams, 172

additive script condition, 174
color-coded, 175
deactivate() command, 175
defining in SimWar, 191–192
designing strategies, 177
diagram with, 171
direct commands, 172–173
endTurn() command, 175
equality script condition, 174
if statements, 173–175
linking, 178
logical and script condition, 

174
logical or script condition, 174

in Monopoly, 179
multiplicative script condition, 

174
nonequality script condition, 

174
purpose of, 177
Quick Run option, 176–177
relational script condition, 174
removing randomness, 

177–178
script box, 172
script conditions, 173–174
selecting node for, 172
stopDiagram(message) 

command, 174
values in conditions, 175

Ashmore and Nietsche, 35
attrition pattern

applicability, 321
collaborations, 322
consequences, 322
examples, 323–324
implementation, 322–323

intent, 321
motivation, 321
participants, 322
related patterns, 325
structure, 322
type, 321

avatars, customizing attributes of, 
135–136

B
basketball

Difference pool, 116
negative feedback, 70, 116–117
positive feedback, 70–71, 

116–117
battle, mapping, 141
Beck, John, 272
“Behavioral Game Design,” 109
Bioshock

moral layer, 295
physical layer, 295
political layer, 295
as satire, 295

Björk, Staffan, 151
blackjack game, length of, 2
board games

randomness vs. emergence in, 
128

reliance on emergent 
progression, 259

Bogost, Ian, 287
bombling keys, example of, 254
Boulder Dash, 9, 26
Brathwaite, Brenda, 297
breadcrumbs, defined, 72

C
Caesar III

advantages, 200
buildings, 204–205
city economy, 199
connecting components, 206
connections between 

elements, 200–201
converter engine, 202
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Caesar III (continued)
described, 199
design patterns, 202
dominant economic structure, 

202–203
dynamic friction, 202
economic buildings, 201
economic relationships, 200
engine building, 202
farms, 204
as game of emergence, 206
landscape, 202–203
maps, 203
markets, 205
mechanisms, 201
missions, 203
money for building, 203
multiple feedback, 202
negative feedback, 203–204
phases of progression, 206
players, 200
progress in, 224
residences, 204
resources, 199
restricting players, 202–203

Caillois, Roger, 222
cartoon physics, explained, 6
“The Case for Game Design 

Patterns,” 150
Caylus board game, activators in, 

92, 128
cellular automata

Game of Life, 53
generation, 48
study of, 48
threshold for complexity, 50
tower defense games, 50
Wolfram’s, 48–49

challenge to adventure, example 
of, 36

challenges
adding to improve experience, 

231–232
atomic, 229
focusing on, 229
relationship to actions, 43–44

chance, relying on, 126
chaos vs. order

emergent systems, 45–47
periodic systems, 45–46

characters, customizing attributes 
of, 135–136

charts, using, 63
chess game

charting patterns, 65
endgame, 65
long-term trend, 65
material number, 64
middle game, 65
opening stage, 65
shape of, 64–65
strategic advantage, 64–65

choice, creating via enemies, 231
Chomsky, Noam, 293
Church, Doug, 149–150
Civilization, 28–30

city economy of, 318
development phases in, 47
discrete mechanics, 29
economies in, 197–198
economy construction, 77
gameplay phases, 30
golden ages, 30
historical periods, 30
phases, 29–30
random maps in, 126
reverse triggers in, 111
vs. StarCraft, 40
strategies, 29
technology tree, 144

Civilization V, negative feedback 
in, 52

closed circuits, creating feedback 
with, 114–115

cognitive effort vs. speed, 232
collectibles, indicating, 131–133
color-coding

delays and queues, 113
Machinations diagrams, 

112–113
combat construction

example of, 141–142
in SimWar, 189

Command & Conquer: Red Alert, 69
communication

interactivity of, 278
model of, 276

communication theory
art and entertainment, 277
channel, 276
design challenges, 280–281
functions, 277

mechanics sending messages, 
279–280

medium and message, 277–279
message, 276
poetic function, 277
receiver, 276
sender, 276
signal, 276

complex systems. See also
emergence; science of 
complexity

active and interconnected 
parts, 48–51

behavioral patterns, 53–56
behaviors, 46
categorizing emergence, 56–57
cell activity, 50
cellular automata, 48
defined, 45
destabilizing, 51–53
dynamic behavior, 49–50
ecosystems, 51–53
emergence in, 47
feedback loops, 51–53
intentional emergence, 56
long-range communication, 49
multiple emergence, 56
nominal emergence, 56
simple cells, 49
simple parts in, 26–27
stabilizing, 51–53
strong emergence, 57
weak emergence, 56
weather, 47

complexity
of game behavior, 45
of rules, 45

complexity barrier, explained, 37
complexity theory, applying to 

phase transitions, 267
concept stage, 13
Connect Four

gravity in, 28
vs. tic-tac-toe, 27

consistency vs. realism, 44
continuous mechanics, 9
converter element, elaborations 

for, 164
converter engine

applicability, 308
in Caesar III, 202
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collaborations, 308
consequences, 309
examples, 309–311
implementation, 309
intent, 308
motivation, 308
participants, 308
related patterns, 311
structure, 308
type, 308

converters
explained, 62
vs. traders, 97
using with resources, 96

Conway, John, 53, 56
Cook, Daniel, 238–239
Copenhagen Games Collective, 5
core mechanics

explained, 4
of video games, 4

Counter-Strike, gun fights in, 24
Crash Bandicoot

Kata stage, 242
Kihon stage, 241–244
Kihon-kata stage, 241
Kumite stage, 242

Crawford, Chris, 25, 232

D
data intensity, 25
deadlocks

being aware of, 73
resolution in Zelda games, 73

delays, using in Machinations 
diagrams, 110–111

Descent: Journeys in the Dark, 305
design, player-centric, 169
design patterns. See also pattern 

descriptions; pattern 
language

arms race, 158
attrition, 156
brainstorming with, 168–169
in Caesar III, 202
combining, 161
converter engine, 154, 202, 

216
defined, 148
vs. design vocabularies, 149

dynamic engine, 153, 162, 
188, 212

dynamic friction, 155, 186, 
202, 255–256

engine building, 154, 212
Engines category, 153–154
escalating challenge, 157, 232
escalating complexity, 157, 

232, 269
Escalation category, 157–158
Friction category, 155–156
in games, 151
history of, 148–149
improving, 168
law of diminishing returns, 

156
multiple feedback, 158
playing style reinforcement, 

158
slow cycle, 160–161
static engine, 153
static friction, 155, 268
stopping mechanism, 156, 269
trade, 159
worker placement, 160

design process. See game design 
process

design tools
investing in, 166–167
support for creativity, 167

design vocabularies, 149
intention, 150
online, 150
perceivable consequence, 150
story, 150

determinability. See also feedback 
structures

deterministic, 124
multiplayer-dynamic, 124
player skill, 124
random flow rates, 124
strategy, 124
Tetris example, 125

deterministic behavior, symbols 
for, 125

deterministic harvesting game, 
129–130

deterministic processes, 
explained, 2

Deus Ex, 25, 76
Diablo-style inventory, 289

dice, rolling, 290
die symbol, appearance of, 84
Diplomacy board game, 

unpredictability of, 3
direct commands. See also artificial 

players
fireAll(), 173
fire(node), 172
fireRandom(), 173, 178
fireSequence(), 173

discrete infinity, explained, 293
discrete mechanics, 9. See also 

mechanics
in Civilization, 29
innovating with, 11
interaction with, 10
in Zelda games, 36

dominant strategies, countering, 
128–130

Donkey Kong, vs. Super Mario Bros., 
9

Doom, internal economy, 59
Dormans, Joris, 79
drains

function of, 95–96
versus sources, 61–62

dynamic engine pattern, 153, 162
applicability, 305
collaborations, 306
consequences, 306
elaborating elements in, 

162–163
examples, 307
implementation, 306–307
intent, 305
lock-and-key mechanisms, 

255–258
in Lunar Colony, 212
motivation, 305
participants, 306
related patterns, 307
The Settlers of Catan, 264
in SimWar, 188
structure, 306
type, 305

dynamic friction pattern
applicability, 316
in Caesar III, 202
collaborations, 316
consequences, 317
examples, 317–318
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dynamic friction pattern 
(continued)

explained, 155
implementation, 317
intent, 316
lock-and-key mechanisms, 

255–256
in Monopoly, 186
motivation, 316
participants, 316
related patterns, 318
structure, 316
type, 316

E
Eco, Umberto, 287, 294, 298–299
economic functions

converters, 62
drains, 62
sources, 61
traders, 62

economic shapes, 62–64
charts, 62–63
chess, 64–65
figures, 62–63
graphs, 63
relating to mechanics, 65–71

economy, defined, 59. See also 
internal economy

economy construction games
building blocks, 77
maps, 77
meta-economic structure, 77

economy-building games
effectiveness, 197
examples of, 197
goals in, 197

ecosystems
complexity of, 51
feedback loop, 51
predator vs. prey, 51

edutainment, 274
elaboration, 13–14

applying to Machinations 
diagrams, 164

for converter element, 164
design focus, 165
explained, 162
of Harvester game, 163
reversing, 164

vs. simplification, 164–165
using as design tool, 162

The Elder Scrolls series, 32, 135
Elite

producing progress in, 263
travel and trade in, 310

Elrod, Corvus, 18
emergence. See also complex 

systems
Caesar III game of, 206
categorizing in complex 

systems, 56–57
Civilization example, 28–30
complexity barrier, 37
complexity of, 26–27
data and process intensity, 25
design considerations, 47
establishing goals for, 222
experiencing, 46
game states, 27–28
gameplay, 27–28
gameplay as, 43–47
harnessing, 57
history of, 23–24
integration with progression, 

39–41
mechanics of, 38
order vs. chaos, 45–47
preference for, 24
probability space, 38
progress in, 224
vs. progression, 24–25, 30–31, 

37–38
vs. randomness, 126–130
replay value, 45
vs. scripting, 268
structure of, 37–38
terminology, 26
water-tap experiment, 46

emergent phases, progression 
through, 269

emergent progression. See also
progress

and gameplay phases, 266–267
overview, 258–259
pacing in, 266
reliance of board games on, 259
variation in, 266

emergent storytelling, 262
emergent vs. periodic systems, 

45–47
end conditions

elements, 223
triggering, 112

enemies, adding to create choice, 
231

energy-harvesting game, 128–130, 
163

engine-building pattern
applicability, 311
in Caesar III, 202
collaborations, 312
consequences, 312
examples, 313
implementation, 312–313
intent, 311
in Lunar Colony, 212
motivation, 311
participants, 312
related patterns, 313
The Settlers of Catan, 264
structure of, 312
type, 311

entities
compound, 61
in Monopoly, 61
simple, 61

equilibrium
changing, 66
defined, 66
dynamic vs. nondynamic, 70
of negative feedback 

mechanism, 70
shape of, 66

escalating challenge pattern
applicability, 325
collaborations, 326
consequences, 326
examples, 232, 326
implementation, 326
intent, 325
motivation, 325
participants, 326
related patterns, 326
structure, 325
type, 325

escalating complexity pattern, 232
applicability, 327
collaborations, 327
consequences, 328
examples, 328–329
in gameplay phases, 269
implementation, 328
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intent, 327
motivation, 327
participants, 327
related patterns, 330
structure, 327
type, 327

ethics and games, 282
Experts Exchange online database, 

275
exponential curves, creating, 

66–67

F
feature freeze, 13
feedback

basing on relative scores, 
70–71

constructive vs. destructive, 
322

feedback basketball, 116–118
feedback characteristics

durability, 122–124
effect, 122
investment, 122–123
range, 122–123
return, 122–123
speed, 122–123
type, 122, 124

feedback loops
affecting outputs, 115
cards and armies, 119
closed circuits, 114
closing, 115
determining effects of, 123
ideal number of, 118
major vs. minor, 118
Monopoly, 147
negative, 52
positive, 53
in Risk, 118
Risk, 147
role in complex systems, 51–53
strength, 123

feedback structures, 113. See also
determinability

affecting outputs, 115
closed circuits, 114–115
level of detail, 121
loops, 118–120
profiles, 121

fighting mechanism, example of, 
141

films and games, 278–279
fireAll() direct command, 

explained, 173
fire(node) direct command, 

explained, 172
fireRandom() direct command, 

explained, 173, 178
fireSequence() direct command, 

explained, 173
flower-collecting game, 231–236
Foldit crowdsourced search, 275
Forest Temple

graph of mission, 34
map of, 34

“Formal Abstract Design Tools,” 
149

formal methods, criticisms of, 
166–167

fortunes of players, charting, 
63–64

FPS economy, 136–138
ammunition, 137
enemies, 137
Engage drains, 137
Kill drains, 137
player health, 137
positive feedback loops, 

137–138
fractions game, Refraction, 274
Frasca, Gonzalo, 296
Fromm, Jochen, 56–57
fun, relationship to learning, 271
Fundamentals of Game Design, 59, 

169
“The Future of Game Design,” 44

G
Gabler, Kyle, 15
gains vs. investments, 68–69
Gamasutra

“The Case for Game Design 
Patterns,” 151

“Formal Abstract Design 
Tools,” 149

forum, 150
“Game Design as Narrative 

Architecture,” 32

game design methodology, 
arguments against, 166–167

Game Design Patterns, 150
game design process

concept stage, 13
documentation, 14
elaboration stage, 13–14
mechanics, 12–14
tuning stage, 13–14

game design tools, arguments 
against, 166–167

game economy, considering, 20
game engines, open-source, 16–17
game genres, 8
Game Innovation Database, 150
game mechanics. See mechanics
Game of Goose racing game, 133
Game of Life, 53

cell states, 53
flocking birds, 54–55
glider, 54
grid structure, 53
iterations, 54
multiple emergence, 56
scales of organization, 56
starting, 53

Game Ontology Project, 150
game spaces

defined, 230
mapping mechanics to, 

235–237
representing linearly, 235
reusing, 230
separating from missions, 230

game states
changes in, 241
clarity of, 241
and gameplay, 27
possibilities of, 27
probability space, 27
trajectory, 27

GameMaker development 
environment, 17

gameplay. See also play state
customizing via economy, 

75–76
defined, 43
as emergence, 43–47
goal-oriented vs. free-form, 

222
levels of, 226
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gameplay (continued)
martial arts principles, 

241–244
paidia vs. ludus, 222
skill atoms, 238–240
structuring, 221–223

gameplay phases
charting in RTS game, 265–266
composing, 268–269
escalating complexity, 269
initiating shifts between, 268
multiple feedback, 269
slow cycle, 268
static engines, 268
static friction, 268
stopping mechanism, 268

games. See also reference games; 
serious games

balancing, 193
of chance, 2
defined, 1
of emergence, 222
ethics, 282
films, 278–279
hidden information in, 241
hybrid example, 5
mechanics of, 39
and simulations, 284–288
simulations in, 285–286
as state machines, 2, 26
unique quality of, 278
unpredictability of, 2–3
victory condition, 221–222

games of emergence. See
emergence

games of progression. See
progression

gamification, 275
gaming vs. playing, 222
Gamma, Erich, 149
“Gang of Four,” 149
gate types, 94, 302
gates

activation modes, 93
automatic, 93
conditional outputs, 93–94
deterministic, 93–94
distribution modes, 94
interactive, 93
output state connections, 95
vs. pools, 93

probable outputs, 93–94
random, 93–94
types of, 93

Global Game Jam, 15
goals of games, considering, 68
Grand Theft Auto

emergence and progression, 39
progress in, 223
reuse of game space in, 230
San Andreas, 25, 298–299

Grand Theft Auto III
debate about, 282
intertextual irony, 298

graphs, using, 63

H
Half-Life series

action adventures, 25
storytelling in, 32–33

Harvester game, elaborations of, 
128–130, 163

health, representing in games, 290
heater feedback mechanism, 

114–115
Helm, Richard, 149
hero’s journey story pattern, 36
Historical Miniatures Gaming 

Society, 274
Holopainen, Jussi, 151
Hopson, John, 109
horizontal slice, creating for 

prototype, 16
hybrid game example, 5
hypotheses, testing, 284–285

I
icon, defined, 282–283
if statements

actions value, 175
actionsOfCommand value, 175
actionsPerStep value, 175
pregen0...pregen9 value, 175
random value, 175
steps value, 175
using with artificial players, 

173–174
improvisation, forcing, 126–127
index, defined, 282–283
intensity, data and process, 25

intentional emergence, explained, 
56

interactive nodes, drawing, 171
interactive stories, creating, 32
interface and control scheme, 

considering, 20
internal economy. See also 

economy
complementing physics, 71–72
converters, 62
customizing gameplay, 75–76
drains, 62
entities, 61
explained, 6
functions, 61–62, 83
game genres, 6
influencing progression, 72–73
probability spaces, 75–76
resources, 6, 60–61
sources, 61
traders, 62

intertextual irony, explained, 
298–299

intervals
dynamic, 109
vs. multipliers, 110
random flow rates, 109
using in Machinations 

diagrams, 108–109
inventory as analogous 

simulation, 288–289
investments vs. gains, 68–69

J
Jakobson, Roman, 277
Jenkins, Henry, 32
Johann Sebastian Joust game, 5
Johnson, Ralph, 149
Juul, Jesper, 23–25

k
Kata martial arts principle, 

241–244
The Kids are Alright, 272
Kihon martial arts principle, 

241–244
Kihon-kata martial arts principle, 

241–244
Kings Quest, progress in, 223–224
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Klondike, length of, 2
Koster, Raph, 166, 271
Kreimeier, Bernd, 150–151
Kriegsspiel game, 272–274
Kumite martial arts principle, 

241–244

l
The Landlord’s Game, 272
LARP (live-action role-play) 

session, 19
law of diminishing returns, 156, 

319
learning

martial arts principles, 
241–244

relationship to fun, 271
LeBlanc, Marc, 70
The Legend of Zelda. See Zelda 

games
Leisure Suit Larry, progress in, 

223–224
less is more, 291–294
levels of gameplay

considering, 226
designing, 229–231
layout perspective, 229
mission of, 230

linear game space, representing, 
235

live-action role-play (LARP) 
session, 19

lock-and-key mechanisms, 132
abilities as keys, 251–252
adding, 236–237
cataloging mechanics, 255
dynamic, 255–258
dynamic friction, 255–256
examples, 247
explained, 247
feedback mechanism, 255, 257
machinations, 252–254
missions and game spaces, 

248–251
player skill, 253
vs. progress as resource, 260

The Longest Journey, 25
Lost Earth HD tower defense game, 

50–51
ludologists vs. narratologists, 31

ludus vs. paidia, 222
Lunar Colony

actions gained, 219
Actions register, 211
balancing, 218
building blocks, 213–216
converter engine, 216
described, 206–207
design patterns, 212
disadvantages, 216
dynamic engine, 212
economic strategies, 218–219
economic structure, 211–212
end conditions, 212
engine building, 212
events, 216–217
game material, 207
ice and ore lodes, 208
ice mines, 209
improving, 213
levels for, 226–227
obstacles, 216–217
ore mines, 209
playing, 209–210
playing area, 207–208
prototype, 207–211
purifiers, 213–215
raiding in, 218
random events, 217
refineries, 214–215
removing dynamic engine, 216
Resources pool, 211
role of energy, 216
rules, 207–210
scripting scenarios, 217
setup, 207–208
stations, 209, 213–215
stations as impediments, 217
technology, 210
transporters, 214–215
way stations, 208–209
winning, 210

M
Machinations diagrams. See also

artificial players; mechanics; 
node types

abstraction, 81–82
action points, 88
activation modes, 85

activators, 92
adding artificial players to, 172
analogous simulation, 292
applying elaboration to, 164
artificial player, 171
asynchronous time mode, 

87–88
balancing, 195
charts in, 114, 176–177
color-coded, 97, 112–113
colors in, 89
connecting nodes, 91–92
connections into nodes, 84
delays, 110–111
digital, 81
end conditions, 97–98, 223
engine categories, 153–154
escalation categories, 157–158
firing nodes automatically, 85
friction categories, 155–156
gates in, 93
generating random numbers, 

84
goals in, 223
hourglass example, 87
input to node, 84
interactive nodes, 85, 171
interactive nodes in, 171
intervals, 108–109
label modifiers, 89–90
level of detail, 81–82
lock-and-key mechanisms, 

252–255
making calculations in, 107
multiple feedback, 159
multipliers, 109–110
negative node resources, 90
node modifiers, 90–91
nodes, 82, 84–85
origin of connection, 84
output of node, 84
passive nodes, 85, 91
pattern descriptions, 151–152
playing style reinforcement, 

158
pools, 83–85, 87, 94
pulling resources, 85–86
pushing resources, 85–86
queues, 110–111
random flow rates, 84
registers, 107–108



ptg8274339

348 Game mechanics: advanced Game desiGn

Machinations diagrams (continued)
resolving pulling conflicts, 88
resource connections, 82–84, 

87
resources, 83
reverse triggers, 111–112
Risk, 120
scope, 81–82
slow cycle, 160–161
state changes, 89–92
state connections, 82
synchronous time mode, 87
time modes, 87–88
trade pattern, 159
triggers, 91–92
turn-based mode, 88
worker placement, 160

Machinations framework
design of, 82, 238
explained, 57
feedback structures, 80
language syntax, 80
overview, 80
theoretical vision, 80

Machinations Tool
bombling keys, 254
features of, 81
fighting mechanism, 141
iterations, 81
nondeterministic symbols, 125
Quick Run mode, 84, 176–177
resource connections, 84
running, 81, 176–177
time steps, 81
using with internal economy, 

83
Magic: The Gathering, 18, 126, 323
Magie, Elizabeth, 272
make the toy first, 15
Man, Play, and Games, 222
management simulation games, 

mechanics, 8
maps, using in economy 

construction, 77
Mario Galaxy, internal economy, 

59
MarioKart, negative feedback 

mechanics in, 71
martial arts principles

Kata, 241–244
Kihon, 241–244

Kihon-kata, 241–244
Kumite, 241–244

material number, producing, 64
mathematical strategists, 169
maze like structures, representing, 

235
McLuhan, Marshall, 277–278
meaning

appearance vs. mechanics, 
296–298

intertextual irony, 298–299
layers of, 294–299
unrelated, 295–296

mechanics. See also discrete 
mechanics; Machinations 
diagrams

action games, 131–133
core, 4
designing, 14
discrete vs. continuous, 9–12
FPS economy, 136–138
game design process, 12–14
game genres, 7–8
of games and stories, 39
internal economy, 6
limiting number of, 233
mapping to game spaces, 

235–237
mapping to missions, 231–235
versus mechanisms, 4
media-independence, 4–6
physics, 6, 9
progression mechanisms, 6
prototype development, 6
racing games, 133–134
randomizing in Monopoly, 182
relating to economic shapes, 

65–71
RPG elements, 135–136
RTS building, 139–140
RTS fighting, 140–143
RTS harvesting, 138–139
versus rules, 3–4
sending messages, 279–280
social interaction, 7
sources, 61
structures, 30
structures in, 226–228
tactical maneuvering, 7
technology trees, 143–144
traders, 62

mechanisms, maximum number 
of, 292. See also progression 
mechanisms

mechanistic perspective, 
explained, 11

Meier, Sid, 28–30, 47
missions

improving, 231
mapping mechanics to, 

231–235
in open game spaces, 234
separating from game spaces, 

230
Monopoly

artificial players, 179
Available pool, 179
buying houses, 184
deterministic version, 180–181
dynamic friction, 185–187
effects of luck, 181–183
entities in, 61
feedback loops, 147
feedback structures, 113
mechanics of, 3–4
model of, 179
property tax mechanism, 186
randomized rent mechanism, 

182
randomizing mechanics, 

182–183
removing randomness, 180
rent and income balance, 

183–185
vs. Risk, 118
rules of, 3–4
as serious game, 272
simulated play-test analysis, 

180–181
static friction, 315
trend in game play, 180
trigger in, 91–92
two-player version, 179

multiple emergence, explained, 56
multiple feedback pattern, 202, 

336
multipliers

dynamic, 110
vs. intervals, 110
using in Machinations 

diagrams, 109–110
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N
narrative architecture, explained, 

32
narratologists vs. ludologists, 31
negative feedback

basketball, 70, 116–117
creating equilibrium with, 

65–66
effect of, 66
equilibrium, 70
explained, 52
incorporating, 203–204
rubberbanding, 71

A New Kind of Science, 49–50
Nimitz, Chester, 274
node types. See also Machinations 

diagrams
converters, 96
drains, 95–96
end conditions, 97–98
gates, 93–95
sources, 95
traders, 97

nodes
activation modes, 85, 302
gate types, 302
pull and push modes, 85–86, 

302
nominal emergence, explained, 

56

O
order vs. chaos

emergent systems, 45–47
periodic systems, 45–46

orthogonal unit differentiation, 
142

P
Pac-Man

capture, 101–102
dots, 99–100, 103
fruit mechanism, 100–101, 103
ghost house, 101, 103
ghosts in, 55
loss of life, 101–102
Machinations diagram, 

102–103

modeling, 98–103
power pills, 102–103
resources, 98–99
Threat pool, 101, 103

paidia vs. ludus, 222
paper prototyping, 17–19

advantages, 18
changing rules, 18–19
disadvantages, 19
LARP session, 19

pattern descriptions. See also
design patterns

Applicability, 152
Collaborations, 152
Consequences, 152
Examples, 152
Implementation, 152
Intent, 152
Motivation, 152
Name, 152
Participants, 152
Related Patterns, 152
Structure, 152

A Pattern Language, 148
pattern language. See also design 

patterns
defined, 148
extending, 165
organization of, 149

patterns, elaboration and nesting, 
161–164

paused state, explained, 2
PeaceMaker

design challenges, 281
mechanics sending messages, 

279–280
percentages

creating random values with, 
84

representing probabilities as, 
94

periodic vs. emergent systems, 
45–47

perspectives, shifting, 224
phase transitions, complexity 

theory applied to, 267
physical mechanics, mixing with 

strategy, 10–11
physical prototyping, 19
physics

cartoon, 6

complementing via economy, 
71–72

explained, 6
game genres, 6
mechanics of, 9
use of, 71–72

play spaces, learning from, 222
play state, explained, 2. See also 

gameplay
player skill, in lock-and-key 

mechanisms, 253
player-centric design, 169
players, measuring progress of, 

225–226. See also artificial 
player

playground, significance of, 222
playing style reinforcement 

pattern. See also RPG 
elements

applicability, 333
collaborations, 334
consequences, 334
examples, 335–336
implementation, 335
intent, 333
motivation, 333
participants, 334
related patterns, 336
structure, 333
type, 333

playing vs. gaming, 222
poetic function, explained, 277
Poole, Steven, 44
pools

vs. gates, 93
vs. registers, 107–108

positive feedback
amplifying differences, 68
basketball, 70–71, 116–117
deadlocks, 67
on destructive mechanisms, 68
effect of, 66–68
explained, 53
exponential curves, 66–67
mutual dependencies, 67

Power Grid board game, 169, 
259–260

production mechanism, 311
random factors, 127–128
stopping mechanism, 321
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power-ups
indicating, 131–132
limited duration, 132

probability space
creating via economy, 75–76
explained, 26
explosion of, 37
shape of, 38

process intensity, 25
processes

deterministic, 2, 129
stochastic, 2

progress. See also emergent 
progression

as aspect of game state, 259
as character growth, 225
as distance to target, 224–225
vs. dynamic locks and keys, 

260
interaction with difficulty, 232
as journey, 259, 261–262
measuring, 260
as player growth, 225–226
producing indirectly, 262–265
as resource, 260
structuring, 223–226
through completing tasks, 

223–224
complexity barrier, 37
data and process intensity, 25
designing, 36
vs. emergence, 24–25, 30–31, 

37–38
goals in, 223
history of, 23–24
influencing via economy, 

72–73
integration with emergence, 

39–41
The Legend of Zelda, 33–36
mechanics of, 31
ordered systems, 47
structure of, 37–38
through emergent phases, 269
tutorials, 31

progression mechanisms. See also
mechanisms

explained, 6
game genres, 6

prototypes
high-fidelity, 15

horizontal slice, 16
low-fidelity, 16
vertical slice, 16

prototyping process, speeding, 
16–17

prototyping techniques
focus, 19–21
game economy, 20
interface and control scheme, 

20
paper, 17–19
physical, 19
reference games, 21
software, 16–17
tech demos, 20
tutorials, 21

Puerto Rico board game, 128
pull and push modes for nodes, 

302
puzzle games, mechanics, 8

Q
“The Quest in a Generated 

World,” 35
queues, using in Machinations 

diagrams, 110–111
Quick Run option, using with 

Machinations Tool, 176–177
Quick Time Events, 292

R
race of accumulation, 69
racing games, rubber banding, 

133–134
railroading, defined, 32
Rand, Ayn, 295
random flow rates

multiplying, 109–110
notations for, 84
using with intervals, 109

random intervals, 109
random number generators, use 

of, 84
random values, creating, 84
randomness

countering dominant 
strategies, 128–130

vs. emergence, 126–130

forcing improvisation, 
126–127

frequency, 126
impact, 126

realism vs. consistency, 44
reference games, picking, 21. See 

also games
Refraction fractions game, 274
registers

interactive, 107–108
passive, 107–108
vs. pools, 107–108
using in Machinations 

diagrams, 107–108
resource connections, label types, 

301
resources

abstract, 60–61
concrete, 60–61
consuming, 110–111
converters, 62
defined, 60
happiness, 61
intangible, 60
producing, 110–111
production rate, 61
redistribution of, 91
reputation, 61
tangible, 60
trading, 110–111
using converters with, 96

reverse triggers, using in 
Machinations diagrams, 
111–112

reward system, creating, Super 
Mario Bros., 72

Risk, 24
activating feedback loops, 

119–120
armies resource, 118
capturing continents, 120
core feedback loop, 118
feedback loop, 147
feedback profiles, 121
gaining territories in, 119–120
internal economy, 59
level of detail, 121
loss of territories, 120
Machinations diagrams, 120
vs. Monopoly, 118
positive feedback loops, 121
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territories resource, 118
rocket jumping, 44
rock-paper-scissors, 

unpredictability of, 3
role-playing games, mechanics, 8
roshambo/rochambeau of, 3
RPG elements. See also playing 

style reinforcement
experience points, 135
levels, 135
negative feedback, 136
positive feedback, 135
progress as character growth, 

225
RTS building, 139–140
RTS fighting, 140–142

defensive mode, 142–143
offensive mode, 142–143
orthogonal unit 

differentiation, 142
RTS games

charting phases in, 267
turtling vs. rushing in, 188

RTS harvesting, 138–139
rubber banding, using in racing 

games, 133–134
rubberbanding, explained, 71
rules

complexity of, 3, 45
for Connect Four, 27
function of, 1
impact on predictability, 3
versus mechanics, 3–4
for tic-tac-toe, 27

rushing strategy, example in 
SimWar, 192

rushing vs. turtling, 188
Ryan, Andrew, 295

S
de Saint-Exupéry, Antoine, 292
Sanders Peirce, Charles, 283
de Saussure, Ferdinand, 283
science, simulations in, 284–285
science of complexity, 43. See also 

complex systems
scripting vs. emergence, 268
SCV (Space Construction Vehicle), 

67–69

semiotics
defined, 282
development of, 284
games and simulations, 

284–288
icons, 282–283
indexes, 282–283
signifier and signified, 283
symbols, 282–283
terminology, 283
as “the theory of the lie,” 287

September 12, 296–297
serious games. See also games

Kriegsspiel, 272–274
The Landlord’s Game, 272–273
Monopoly, 272
simulation in, 288
war games, 272

The Settlers of Catan, 259–260, 
263–264

dynamic engine, 264
economy of, 264–265
engine building pattern, 264
objective of, 263

The Seven Cities of Gold, 269
Shakespeare, appeal of, 294–295
Shannon, C. E., 27
shapes. See economic shapes
signifier and signified, defined, 

283
SimCity, 23

disaster scenarios, 77
economies in, 197–198
economy construction, 76
mechanics sending messages, 

279–280
meta-economic structure, 77
random maps in, 126
walkthrough for map, 25

The Sims
materialistic approach of, 265
measuring progress in, 265

simulations
abstraction, 286–287
analogous, 288–289, 291–293
errors in, 287
in games, 285–286
in science, 284–285
in serious games, 288
symbolic, 290–293

SimWar
artificial players, 191–192
attacking and defending, 189
average times, 193–194
building units, 189
color-coded resources, 189
combat, 189
costs of factories and units, 

193–194
defensive units, 189
described, 187
draws or timeouts, 193–194
dynamic engine, 188
factories and resources, 

188–189
modeling, 188–189
offensive units, 189
playing, 191
production costs, 192–193
random turtle player, 191
Resources pool, 188
rush wins, 193–194
rushing strategy, 192
spending resources, 189
strength of players, 190
turtle wins, 193–194
tweaking values, 192–194
two-player version, 190
visual summary, 187–188

skill atoms
action event, 238–239
feedback event, 238–239
modeling event, 238–239
simulation event, 238–239
in Super Mario Bros., 238–239

skill of player, considering, 125
skill trees, characteristics of, 

238–239
skills, learning vs. mastering, 240
slow cycle pattern, 336
Smith, Harvey

“The Future of Fame Design,” 
44

orthogonal unit 
differentiation, 142

social games, mechanics, 8
social interaction

explained, 7
game genres, 7

software prototyping, 16–17
advantage, 17
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software prototyping (continued)
customization, 17
Spore, 17

sources
versus drains, 61–62
explained, 61
representing for nodes, 95

space, depiction of, 32
Space Construction Vehicle (SCV), 

67–69
Space Hulk, asymmetrical attrition 

in, 324
Space Invaders

trading progress points in, 260
victory conditions in, 221–222

spatial storytelling, 32
speed vs. cognitive effort, 232
Spore, prototypes for, 17, 19
sports games, mechanics, 8
stability, creating in dynamic 

systems, 65–66
Star Wars: X-Wing Alliance, 304
StarCraft, 23

vs. Civilization, 40
comparing versions of, 227
“The Evacuation” mission, 40
harvesting minerals in, 307
harvesting raw materials in, 

66–67, 69
narrative, 40
player performance, 69
resource distribution, 69
to StarCraft 2, 40–41

StarCraft II
economy of, 226
“Outbreak” level, 227–228
resource harvesting in, 236–237

state connections
activators, 302
function of, 141
label modifiers, 301
label types, 302
node modifiers, 302

state machines
games as, 2, 26
probability space, 26

states, shifts between, 267
static engine

applicability, 303
collaborations, 303
consequences, 303–304

examples, 304–305
implementation, 304
intent, 303
motivation, 303
related patterns, 305
type, 303

static friction pattern
applicability, 314
collaborations, 314
consequences, 314
examples, 315
implementation, 314–315
intent, 314
motivation, 314
participants, 314
related patterns, 315
structure, 314
type, 314

stochastic processes, explained, 2
stopping mechanism pattern

applicability, 319
collaborations, 319
consequences, 320
examples, 320–321
implementation, 320
intent, 319
motivation, 319
participants, 319
related patterns, 321
structure, 319
type, 319
using in gameplay phases, 269

stories, mechanics of, 39
storytelling in games, 32, 228–229

avoiding repetition, 261
connecting events in, 261
emergent, 262
focusing on characters in, 261
ludologists, 31
narratologists, 31
progress as journey, 261–262
railroading, 32
StarCraft, 40

strategic advantage, measuring, 64
strategy games

adding research to, 143
mechanics, 8
physical mechanics of, 10–11
tactical maneuvering in, 7

strong emergence, explained, 57
structural qualities

considering, 57
Machinations framework, 57

structures, defined, 30
subject-matter expert, working 

with, 288
subtasks

adding, 233–234
dependencies among, 234

Super Crate Box, 329
Super Mario Bros., 131

board game for, 9
defeating enemies in, 291
vs. Donkey Kong, 9
fighting in, 291
Kata stage, 242
Kihon stage, 241–244
Kihon-kata stage, 241
Kumite stage, 242
reward system, 72
skill atom in, 238–239
skill tree, 239–240

symbolic simulation, 290–293
symbols, significance of, 282–283

T
tactical maneuvering

explained, 7
game genres, 7

“tank rush,” explained, 69
tasks

mutually exclusive, 235
optional, 235

tech demos, features of, 20
technology trees, modeling, 143
Tetris, 26

escalating complexity, 329
feedback loop, 125
progression through emergent 

phases, 269
tetrominoes in, 44

A Theory of Fun for Game Design, 
271

tic-tac-toe vs. Connect Four, 27
timed effect, creating, 111
tower defense games

activity level, 50
asymmetrical arms race, 332
components, 50
connections, 50
dynamic friction, 317
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Lost Earth HD, 50–51
trade pattern, 336
traders

vs. converters, 97
explained, 62

Train, 297
trajectory, role in game state, 27
Trigger Happy, 44
tuning stage, 13–14
turtling vs. rushing, 188
tutorials

building, 21
creating, 31

u
Unity development environment, 

17
unpredictability, sources of, 3

v
vehicle simulation games, 

mechanics, 8
vertical slice, creating for 

prototype, 16
victory conditions, explained, 

221–222
video games

core mechanics, 4
serious category of, 274–275

views, shifting, 224
Vlissides, John, 149
Vogler, Christopher, 36

W
Wade, Mitchell, 272
war games, history of, 272, 274
Warcraft

converters, 62
intangible resources, 60
tangible resources, 60

WarCraft III, stopping mechanism 
in, 320

Wardrip-Fruin, Noah, 39
weak emergence, explained, 56
weather system example, 47
Wolfram, Stephen, 48–50, 53
worker placement pattern, 336

World of Goo, 10–11, 26
Wright, Will, 187

x
X-COM: UFO Defense, 38

Z
Zelda games, 25, 33–36

bow and arrow, 254
challenge to adventure, 36
combat in, 35
combining keys in, 254
deadlock resolution in, 73
discrete mechanics, 36
dungeons, 35
emergence and progression, 35
Forest Temple level, 33–36
gale boomerang, 35
hub-and-spoke layout, 35
keys consumed upon use, 253
Link’s adventures, 36
lock and key mechanisms, 

35–36
pottery as source, 73
storytelling in, 228–229
Twilight Princess, 33, 36, 

243–244
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design pattern library

Static Engine
n	 Type: Engine

n	 Intent: Produces a steady flow of resources over time for players to consume or to 
collect while playing the game.

n	 Motivation: A static engine creates a steady flow of resources that never dries up. 

Applicability
Use a static engine when: 

n	 You want to limit players’ actions without complicating the design. A static 
engine forces players to think how they are going to spend their resources without 
much need for long-term planning. 

Structure Participants
n	 Energy that is produced by the  
static engine

n	 A source that produces energy

n	 Actions the player can spend  
energy on

Collaborations
The source produces energy at a fixed or an unpredictable rate.

Consequences
The production rate of a static engine does not change, so the effects of the engine 
on game balance are very predictable. A static engine can be the cause of imbalance 
only when its production rate is not the same for all the players.

NOT E A static engine 
must provide players 
with some options to 
spend the resources 
on. A static engine
with only one option to 
spend the resources on 
is of little use.

B-1

Online Appendix B



ptg8274339

B-2 GAme meChAniCS: AdvAnCed GAme deSiGn

A static engine generally does not inspire long-term strategies: Collecting resources 
from a static engine, if possible at all, will be quite obvious. 

implementation
Normally, it is simple to implement a static engine: A single source that produces the 
energy will suffice. It is possible to add multiple steps in the energy production, but 
in general this will add little to the game. 

A static engine can be made unpredictable by using some form of variation in the 
production rate. An unpredictable static engine will force the player to prepare for 
periods of fewer resources and reward players who make plans that can withstand 
bad luck. The easiest way to create an unpredictable static engine is to use random-
ness to vary the output level of resources or the length of time between moments of 
production, but skill or multiplayer dynamics could work as well.

The outcome of random production rates can be, but does not need to be, the same 
for every player. By using an unpredictable static engine that generates the same 
resources for all players, the luck factor is evened out without affecting the unpre-
dictability. This puts more emphasis on the planning and timing that the pattern 
introduces. An example would be a game in which all players secretly decide how 
many resources all players can get. The lowest number will be the number of 
resources to enter play for everyone, while the players who proposed the lowest can 
act first. This would automatically set up some feedback from the game’s current 
state to this mechanism. (This system discourages inflation.)

examples
The energy produced by the spacecraft in Star Wars: X-Wing Alliance is an example 
of a static engine. The energy can be diverted to boost the player’s shields, speed, and 
lasers. This is a vital strategic decision in the game, and the energy allocation can be 
changed at any moment. The amount of energy generated every second is the same 
for all spacecraft of the same type (Figure B.1).

Figure B.1
distribution of energy 
in Star Wars: X-Wing 
Alliance



ptg8274339

deSiGn PAttern LibrAry B-3

O
n

li
n

e
 A

p
p

e
n

d
ix

 B

In many turn-based games, the limited number of actions a player can perform in 
each turn can be considered a static engine. In this case, the focus of the game is 
the choice of actions, and generally players cannot save actions for later turns. The 
fantasy board game Descent: Journeys in the Dark uses this mechanism. Players can 
choose between one of three actions for their hero every turn: move, attack, or pre-
pare a Special Action (Figure B.2). In our diagram, a player gets two actions every 
turn and can perform the special action only once per turn. This creates five possi-
ble combinations: The player can attack twice, move twice, attack and move, attack 
and do a special action, or move and do a special action.

related Patterns
n	 A weak static engine can prevent deadlocks in a converter engine.

n	 A static engine can be elaborated by a dynamic engine, a converter engine, or a slow 
cycle pattern.

Dynamic Engine
n	 Type: Engine

n	 Intent: A source produces an adjustable flow of resources. Players can invest 
resources to improve the flow. 

n	 Motivation: A dynamic engine produces a steady flow of resources and opens the 
possibility for long-term investment by allowing the player to spend resources to 
improve production. The core of a dynamic engine is a positive constructive  
feedback loop. 

Applicability
Use a dynamic engine when you want to introduce a trade-off between long-term 
investment and short-term gains. This pattern gives the player more control over 
the production rate than a static engine does.

Figure B.2
distribution of 
action points in the 
board game Descent: 
Journeys in the Dark
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Structure Participants
n	 Energy produced by the dynamic 
engine

n	 A source that produces energy

n	 Upgrades that affect the production 
rate of energy

n	 An invest action that creates 
upgrades

n	 Actions the player can spend on, 
including the invest action

Collaborations
The dynamic engine produces energy that is consumed by a number of actions. One 
action (Invest) produces upgrades that improve the energy output of the dynamic 
engine. A dynamic engine allows two different types of upgrades a player can invest 
in to improve its production:

n	 The frequency at which energy is produced

n	 The number of energy tokens generated each time

The differences between the two are subtle. A high frequency will create a steady 
flow, while a high number (but low frequency) will lead to bursts of energy. 

Consequences
A dynamic engine creates a powerful positive constructive feedback loop that prob-
ably needs to be balanced by some pattern implementing negative feedback, such 
as any form of friction. Alternatively, balance it by using escalation to create chal-
lenges of increasing difficulty.

When using a dynamic engine, you must be careful not to create a dominant strat-
egy, either by favoring the long-term strategy too much or by making the costs for 
the long-term strategy too high.

A dynamic engine generates a distinct gameplay signature. A game that consists of 
little more than a dynamic engine will cause the players to invest at first, appearing 
to make little progress. Beyond a certain point, the player will start to make more 
progress and needs to try to do so at the quickest possible pace. 

implementation
The chance of building a dominant strategy that favors either long-term or short-
term investment is reduced when some sort of randomness is introduced in the 
dynamic engine. However, the positive feedback loop that exists in an unpredictable 
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dynamic engine will amplify the luck a player has in the beginning of the game, 
which might result in too much randomness quickly. 

The outcome of random production rates can be, but does not need to be, the same 
for every player. By using an unpredictable dynamic engine that generates the same 
resources for all players, the luck factor is reduced without affecting the unpredict-
ability. This puts more emphasis on the player’s chosen strategy. 

Some dynamic engines allow the player to convert upgrades back into energy, usu-
ally against a lower rate than the original investment. When upgrades are expensive 
and the player frequently needs large amounts of energy, this becomes a viable option.

examples
In StarCraft, one of the abilities of Space Construction Vehicle (SCV) units is to har-
vest minerals that can be spent on creating more SCV units to increase the mineral 
harvest (Figure B.3). In its essence, this is a dynamic engine that propels the game 
(although in StarCraft the number of minerals is limited and SCV units can be killed 
by enemies). It immediately offers the player a long-term option (investing in many 
SCV units) and a short-term option (investing in military units to attack enemies 
quickly or respond to immediate threats). 

The economy of The Settlers of Catan revolves around a dynamic engine affected 
by chance. The roll of the dice determines which game board tiles will produce 
resources at the start of each player’s turn. Building more villages increases the 
chance to receive resources every turn. The player can also upgrade villages into 
cities, which doubles the resource output of each tile. The Settlers of Catan gets 
around the typical signature a dynamic engine creates by allowing different types 
of invest actions and by measuring upgrades instead of energy to determine the 
winner. See the section “Producing Progress Indirectly” in Chapter 11, “Progression 
Mechanisms,” for a more detailed discussion and diagram for The Settlers of Catan.

related Patterns
n	 Dynamic friction and attrition are suitable patterns to counter the long-term ben-
efits of a dynamic engine, while static friction emphasizes the long-term investments.

n	 A dynamic engine elaborates the static engine pattern.

n	 A dynamic engine can be elaborated by the engine building and the worker placement
pattern.

Figure B.3
the harvesting of  
minerals in StarCraft.
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Converter Engine
n	 Type: Engine

n	 Intent: Two converters set up in a loop create a surplus of resources that can be 
used elsewhere in the game.

n	 Motivation: Two resources that can be converted into each other fuel a feedback 
loop that produces a surplus of resources. At least one of the converters must output 
more resources than it takes in to create the surplus. The converter engine is a more 
complicated mechanism than most other engines but also offers more opportunities 
to improve the engine. As a result, a converter engine is nearly always dynamic. 

Applicability
Use a converter engine when: 

n	 You want to create a more complex mechanism to provide the player with more 
resources than a static or dynamic engine provides. (Our example converter engine 
contains two interactive elements, while the dynamic engine contains only one.) It 
increases the difficulty of the game because the strength and the required invest-
ment of the feedback loop are more difficult to assess. 

n	 You need multiple options and mechanics to tune the profile of the feedback 
loop that drives the engine and thereby the stream of resources that flow into the game. 

Structure Participants
n	 Two resources: energy and fuel

n	 A converter that changes fuel into 
energy

n	 A converter that changes energy 
into fuel

n	 Actions that consume energy

Collaborations
The converters change energy into fuel and fuel into energy. Normally the player 
ends up with more energy than he started with. 
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Consequences
A converter engine introduces the chance of a deadlock. When both resources dry 
up, the engine stops working. Players run the risk of creating deadlocks themselves 
if they forget to invest energy to get new fuel. Combine a converter engine with a 
weak static engine to prevent this from happening. 

A converter engine requires more work from the player, especially when the con-
verters need to be operated manually.

As with dynamic engines, a positive feedback loop drives a converter engine. In most 
cases, this feedback loop needs to be balanced by applying some sort of friction. 

implementation
The number of steps involved in the feedback loop of a converter engine strongly 
affects how hard it is to make it operate efficiently. More steps increase the diffi-
culty; fewer steps reduce the difficulty. At the same time, more steps offer additional 
opportunities for tuning or adding to the engine.

With too few steps in the system, the advantages of the converter engine are limited,  
and you might consider replacing it with a dynamic engine. Too many steps might 
result in an engine that is cumbersome to operate and/or maintain, especially in a  
board game in which the different elements of the engine usually cannot be automated.

It is possible to create an unpredictable converter engine by introducing random-
ness, multiplayer dynamics, or skill into the feedback loop. This complicates the 
converter engine further and often increases the chance that a deadlock will occur. 

Many implementations of the converter engine pattern put a limiter somewhere 
in the cycle to keep the positive engine under control and to keep the engine from 
producing too much energy. For example, if the number of fuel resources that can 
be converted each turn is limited, the maximum rate at which the engine can run 
is capped. In a Machinations diagram, you can use a gate node to limit the flow of 
resources. In an automobile, the car’s engine converts fuel into energy, which drives 
the fuel pump; the fuel pump consumes some of that energy to send more fuel to 
the engine. This creates a positive feedback loop that is limited by the throttle.

examples
The 1980s-era space trading computer game Elite features an economy that occa-
sionally acts as a converter engine. In Elite, every planet has its own market, selling 
and buying various trade goods. Occasionally, players will discover a lucrative trade 
route where they can buy one trade good at Planet A, sell it at a profit at Planet B, 
and return with another good that is in high demand on Planet A again (Figure B.4).  
Sometimes these routes involve three or more planets. Essentially, such a route is 
converter engine. It is limited by the cargo capacity of the player’s ship, which can 
be enlarged for a price. Other properties of the player’s ship might also affect the 
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effectiveness of the converter engine: The ship’s “hyperspeed” range and its capabili-
ties (or cost) to survive a voyage through hostile territories all affect the profitability 
of particular trade routes. Eventually, trade routes become less profitable as the play-
er’s efforts reduce the demand, and thus the price, for certain goods over time (a 
mechanism that is omitted from the diagram).

The player’s location on Planet A or Planet B activates the converters that imple-
ment the trading mechanisms in the center. A few possible ship upgrades are 
included on the right.

A converter engine is at the heart of Power Grid (Figure B.5), although one of the 
converters is replaced by a more elaborate structure (see the section “Elaboration 
and Nesting Patterns” in Chapter 7, “Design Patterns”). The players spend money 
to buy fuel from a market and use that fuel to generate money in power plants. 
The fiction of the game is that players generate and sell electricity. However, the 
game mechanics do not model electricity itself; players simply convert fuel directly 
into money. Surplus money is invested in more efficient power plants and con-
necting more cities to the player’s power network. The converter engine is limited: 
The player can earn money only for every connected city, which effectively caps 
the money output during a turn. Power Grid also has a weak static engine to prevent 
deadlocks: The player will collect a small amount of money during a turn even if 
the player failed to generate money through power plants. The converter engine of 
Power Grid is slightly unpredictable as players can drive up the price of fuel by stock-
piling it, which acts as a stopping mechanism at the same time.

Figure B.4
travel and trade  
in Elite
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related Patterns
n	 A converter engine is well suited to be combined with the engine building pattern 
because there are many opportunities to change the settings of the engine: the con-
version rate of two converters and possibly the setting of a limiter.

n	 The positive feedback a converter engine creates is best balanced by introducing 
some sort of friction.

n	 A converter engine elaborates the static engine pattern.

n	 A converter engine can be elaborated by the engine building and the worker place-
ment pattern.

Engine Building
n	 Type: Engine

n	 Intent: A significant portion of gameplay is dedicated to building up and tuning 
an engine to create a steady flow of resources.

n	 Motivation: A dynamic engine, converter engine, or a combination of different 
engines form a complex and dynamic core of the game. The game includes at least 
one, but preferably multiple, mechanics to improve the engine. These mechanics 
can involve multiple steps. For the engine building pattern to generate interesting 
gameplay, it should not be trivial for the player to assess the state of the engine.

Applicability
Use engine building when: 

n	 You want to create a game that has a strong focus on building and construction. 

n	 You want to create a game that focuses on long-term strategy and planning. 

Figure B.5
the production  
mechanism in Power 
Grid. the converter 
engine is in blue.
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Structure

Participants
n	 The core engine usually is a complex structure combining multiple engine types.

n	 At least one, but usually multiple, building mechanisms to improve the core 
engine.

n	 Energy is the main resource produced by the core engine. 

Collaborations
Building mechanisms increase the output of the engine. If energy is required to acti-
vate building mechanisms, then a positive, constructive feedback loop is created. 

Consequences
The engine building increases the difficulty of a game. It is best suited to slower-
paced games because it involves planning and strategic decisions.

implementation
Including some form of unpredictability is a good way to increase difficulty, gener-
ate varied gameplay, and avoid dominant strategies. Engine building offers many 
opportunities to create unpredictability because the core engine tends to consist 
of many mechanisms. The complexity of the core engine itself usually also causes 
some unpredictability. 

When using the engine building pattern with feedback, it is important to make sure 
the positive, constructive feedback is not too strong and not too fast. In general, you 
want to spread out the process of engine building over the entire game.

NOT E the structure 
of the core engine is 
an example. there is 
no fixed way of build-
ing the engine. engine 
building requires only 
that several building 
mechanics operate on 
the engine and that 
the engine produces 
energy.
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An engine building pattern operates without feedback when energy is not required 
to activate building mechanisms. This can be a viable structure when the engine 
produces different types of energy that affect the game differently and allows the 
players to follow different strategies that favor particular forms of energy above oth-
ers. However, it usually does require that the activation of building mechanisms is 
restricted in some way.

The upgrade mechanism in a dynamic engine pattern also is an example of a building 
mechanism. In fact, the dynamic engine is a simple and common implementation 
of an engine building pattern. However, its simplicity means that a dynamic engine
allows only one or maybe two kinds of upgrades. The typical core engines in a game 
that follow the engine building pattern allow for many more upgrade options.

examples
SimCity is a good example of engine building. The energy in SimCity is money, which  
is used to activate most building mechanisms. The mechanisms consist of prepar-
ing building sites, zoning, building infrastructure, constructing special buildings, 
and demolition. The core engine of SimCity is quite complex with many internal 
resources such as people, job vacancies, power, transportation capacity, and three 
different types of zones. Feedback loops within the engine cause all sorts of friction 
and effectively balance the main positive feedback loop, up to the point that the 
engine can collapse if the player is not careful and manages the engine poorly.

In the board game Puerto Rico, each player builds up a New World colony. The colony  
generates different types of resources that can be reinvested or converted into victory 
points. The core engine includes many elements and resources such as plantations, 
buildings, colonists, money, and a selection of different crops. Puerto Rico is a mul-
tiplayer game in which the players compete for a limited number of positions that 
allow different actions to improve the engine; they compete for different building 
mechanics. This way, a strong multiplayer dynamic is created that contributes much 
of its gameplay.

related Patterns
n	 Applying multiple feedback to the building mechanisms is a good way to increase 
the difficulty of the engine building pattern.

n	 All friction patterns are suitable to balance the typical positive feedback created 
by an implementation of engine building that consumes energy to activate building 
mechanisms.

n	 The dynamic engine is one of the simplest possible implementations of an engine 
building pattern. 

n	 The engine building pattern elaborates the dynamic engine and converter engine patterns.

n	 The engine building pattern can be elaborated by the worker placement pattern.
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Static Friction
n	 Type: Friction

n	 Intent: A drain automatically consumes resources produced by the player.

n	 Motivation: The static friction pattern counters a production mechanism by 
periodically consuming resources. The rate of consumption can be constant or sub-
jected to randomness.

Applicability
Use static friction when: 

n	 You want to create a mechanism that counters production but can eventually be 
overcome by the players. 

n	 You want to exaggerate the long-term benefits from investing in upgrades for a 
dynamic engine.

Structure Participants
n	 A resource: energy

n	 A static drain that consumes energy

n	 A production mechanism that pro-
duces energy

n	 Other actions that consume energy

Collaborations
The production mechanism produces energy that players need to use to perform 
actions. The static drain consumes energy outside players’ direct control.

Consequences
The static friction pattern is a relatively simple way to counter positive feedback 
created by engine patterns. However, it tends to emphasize the long-term strategy 
inherent to the dynamic engine because it reduces the initial output of the dynamic 
engine but does not affect any upgrades.

implementation
An important consideration when implementing static friction is whether the con-
sumption rate is constant or subject to some sort of randomness. Constant static 
friction is the easiest to understand and most predictable, whereas random static 
friction can cause more noise in the dynamic behavior of the game. The latter can 
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be a good alternative to using randomness in the production mechanism. The fre-
quency of the friction is another consideration: When the feedback is applied at 
short intervals, the overall system will be more stable than when the feedback is 
applied at long or irregular intervals, which might cause periodic behavior in the 
system. In general, the effects of a continual loss of energy on the dynamic behavior 
of the system are less powerful than a periodic loss of the same amount of energy.

examples
In the Roman city-building game Caesar III, the player must pay tribute to the 
emperor at particular moments during each mission. The schedule of the tribute 
payments is fixed for each mission and not affected by the player’s performance. 
In effect, they cause a very infrequent and high form of static friction that causes a 
huge tremor in the game’s internal economy. See Chapter 9, “Building Economies,” 
for a more detailed discussion of this game.

The dynamic engine in Monopoly is countered by different types of friction, includ-
ing static friction (Figure B.6). The main mechanism that implements static friction 
is the Chance cards through which the player infrequently loses money. Although 
some of these cards take into account the player’s property, most of them do not. 

You might think that paying rent to other players is also a form of static friction because 
the frequency and severity of the payments are far beyond the direct control of the  
player who has to pay. However, paying rent is an example of the attrition pattern, not  
static friction. The rate of the friction does change over time, and players have some 
indirect effect on it: When a player is doing well, chances are that his opponents 
are not, which negatively affects this friction. The diagram in Figure B.8 does not 
include this aspect because it is made from the viewpoint of an individual player.

related Patterns
n	 Static friction exaggerates long-term investments, and therefore it is best suited to   
be used in combination with a static engine, converter engine, or an engine building pattern.

n	 Static friction is elaborated by the dynamic friction or the slow cycle pattern.

Figure B.6
Static friction in 
Monopoly
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Dynamic Friction
n	 Type: Friction

n	 Intent: A drain automatically consumes resources produced by the player; the 
consumption rate is affected by the state of other elements in the game.

n	 Motivation: Dynamic friction counteracts production but adapts to the perfor-
mance of the player. Dynamic friction is a classic application of negative feedback in 
a game. 

Applicability
Use dynamic friction when: 

n	 You want to balance games in which resources are produced too fast. 

n	 You want to create a mechanism that counters production and automatically 
scales with players’ progress or power. 

n	 You want to reduce the effectiveness of long-term strategies created by a dynamic 
engine in favor of short-term strategies.

Structure

Participants
n	 A resource: energy

n	 A dynamic drain that consumes energy

n	 A production mechanism that produces energy

n	 Other actions that consume energy

Collaborations
The production mechanism produces energy that players need to perform actions. 
The dynamic drain consumes energy outside players’ direct control but is affected 
by the state of at least one other element in the game system.
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Consequences
Dynamic friction is a good way to counter positive feedback created by engine pat-
terns. Dynamic friction adds a negative feedback loop to the game system.

implementation
There are several ways of implementing dynamic feedback. An important consid-
eration is the choice of the element that causes the consumption rate to change. 
In general, this can be either the amount of available energy itself, the number of 
upgrades to a dynamic engine or a converter engine, or the player’s progress toward a 
goal. When the amount of available energy changes the friction, the negative feed-
back tends to be fast. When progress or production power is the cause, the feedback 
is more indirect and probably slower. 

When dynamic friction is used to counter a positive feedback loop, it is important 
to consider the difference in characteristics of the positive feedback loop and the 
negative feedback loop implemented through the dynamic friction. When the char-
acteristics are similar (equally fast, equally durable, and so on), the effect is far more 
stable than when the differences are large. For example, when a slow and durable 
dynamic friction is acting against a fast but nondurable positive feedback that ini-
tially yields a good return, players will initially make a lot of progress but might 
suffer in the long run. Fast positive feedback and slow negative feedback seems to be 
the most frequently encountered combination.

examples
The mechanics of tower defense games typically revolve around a dynamic drain 
on the player’s life points caused by enemies that the player must keep under con-
trol by building towers (Figure B.7). In this case, the goal of the game is to prevent 
dynamic friction from taking effect. In real tower defense games, placing the right 
types of towers involves a strategy that is omitted from this diagram.

Figure B.7
dynamic friction in 
tower defense games
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Dynamic friction is used in the city production mechanism in Civilization (Figure B.8). 
In this game, the player builds cities to produce food, shields, and trade. As cities 
grow, they need more and more food for their own population. Players have some 
control over how much food is produced compared with other resources, but the 
players’ options are limited by the surrounding terrain. By choosing to produce a lot 
of food early, cities initially produce fewer other resources but grow faster because 
of great potential. Fast growth creates a problem, however, because the happiness 
rating of a city must stay equal to or higher than half the population, or else the 
production stops due to of civil unrest. Initially, a city has a happiness value of two. 
Players can create more happiness by building special buildings or by converting trade  
into culture. Both approaches cause more dynamic friction with different profiles on 
the production process. Constructing special buildings is slow and requires a high 
investment but is highly durable and has a relatively high rate of return. Converting 
trade to culture is fast but has a relatively low return for the investment required.

related Patterns
n	 Dynamic friction is a good way to balance any pattern that causes positive feed-
back and often is part of the multiple feedback pattern.

n	 Attrition elaborates dynamic friction that is the result of multiplayer interaction.

n	 Dynamic friction is elaborated by a stopping mechanism.

Figure B.8
the city economy of 
Civilization. dynamic 
friction mechanisms 
are printed in color. 
the player can freely 
adjust the culture and 
research settings to 
control unrest and 
research production. 
these settings are 
global and affect all 
cities equally.
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Stopping Mechanism
n	 Type: Friction

n	 Intent: Reduce the effectiveness of a mechanism every time it is activated. 

n	 Also known as: Law of diminishing returns.

n	 Motivation: To prevent a player from abusing a powerful mechanism, the mech-
anism’s effectiveness is reduced every time it is used. In some cases, the stopping 
mechanism is permanent, but usually it’s not. 

Applicability
Use a stopping mechanism when: 

n	 You want to prevent players from abusing particular actions. 

n	 You want to counter dominant strategies. 

n	 You want to reduce the effectiveness of a positive feedback mechanism.

Structure

Participants
n	 An action that might produce some sort of output

n	 A resource energy that is required for the action

n	 The stopping mechanism that increases the energy cost or reduces the output  
of the action

Collaborations
For a stopping mechanism to work, the action must have an energy cost, produce 
resources, or both. The stopping mechanism reduces the effectiveness of an action 
mechanism every time it is activated by increasing the energy costs or reducing  
the output of resources.
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Consequences
Using a stopping mechanism can reduce the effect of a positive feedback loop con-
siderably and even make its return insufficient.

implementation
When implementing a stopping mechanism, it is important to consider whether to 
make the effects permanent. When the accumulated output is used to measure the 
strength of the stopping mechanism, the effects are not permanent. In that case, it 
requires players to alternate frequently between creating the output and using the 
output in other actions. 

A stopping mechanism can apply to each player individually or can affect multiple 
players equally. In the latter case, the game will reward players that use the action 
before other players do. This means that the stopping mechanism can create a form 
of feedback depending on whether leading or trailing players are likely to act first.

examples
A subtle stopping mechanism can be found in the timber-harvesting mechanism 
in Warcraft III. In Warcraft III, players can assign peasants to cut wood and produce 
lumber. Because the peasants have to transport the lumber back from the forest to 
the player’s base and cannot cut wood while transporting, the distance to the forest 
has an effect on effectiveness of the production mechanism. Because cutting wood 
clears the forest, the distance increases as the player cuts more and more wood. 
Figure B.9 represents these mechanics.

The price mechanism of the fuel market in Power Grid involves a stopping mecha-
nism (Figure B.10). In Power Grid, players use money to buy fuel and burn fuel to 
generate money. This positive feedback loop is counteracted by the fact that buying 
a lot of fuel actually drives up the price for all players. Because the leading player 
acts last in Power Grid, this stopping mechanism causes powerful negative feedback 
for the leading player. 

Figure B.9
the stopping mecha-
nism in Warcraft III: 
the production rate for 
each peasant will drop 
to 0.4 when the forest 
is almost cleared.
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related Patterns
n	 Stopping mechanisms are often found in systems that implement multiple feedback.

n	 A stopping mechanism elaborates the dynamic friction pattern.

n	 A stopping mechanism might be elaborated by a slow cycle pattern.

Attrition
n	 Type: Friction

n	 Intent: Players actively steal or destroy resources of other players that they need 
for other actions in the game.

n	 Motivation: By allowing players to directly steal or destroy each other’s 
resources, players can eliminate each other in a struggle for dominance.

Applicability
Use attrition when: 

n	 You want to allow direct and strategic interaction between multiple players. 

n	 You want to introduce feedback into a system whose nature is determined by the 
strategic preferences and/or whims of the players.

Figure B.10
the stopping mecha-
nism in Power Grid 
drives up the price 
of fuel and causes 
negative feedback, 
especially for leading 
players.
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Structure

Participants
n	 Multiple players who have the same (or similar) mechanics and options.

n	 A strength resource. A player who loses all his strength is eliminated from the 
game.

n	 A special attack action that drains or steals the other player’s strength.

Collaborations
By performing attack actions, players can drain each other’s strength. Attacking 
may, or may not, cost strength to perform. If attacking doesn’t cost strength, it 
should require time to perform or involve some measure of skill or randomness. 
The balance between the attack costs, its effectiveness, and how beneficial the other 
actions in the game are determine the effectiveness of the attack and the dominance 
of the attrition pattern.

Consequences
Attrition introduces a lot of dynamism into a system because players directly control 
the measure of the destructive force applied to each other. Often, this introduces 
destructive feedback because the current state of a player will cause reactions by 
other players. Depending on the nature of the winning conditions and the current 
state of the game, this feedback might be negative when it stimulates players to act 
and conspire against the leader, but it also might cause positive feedback when play-
ers are stimulated to attack and eliminate weaker players. 

implementation
For attrition to work well, players should be required to invest some sort of resource 
in attacking that could also be spent otherwise. If they don’t have to make this 
investment, in a two-player game attrition simply becomes a race to destroy the 
opponent with few or no strategic choices. In a multiplayer game that facilitates 
social interaction between the players, attacking without investment works a little 
better because the players need to choose whom to attack.

NOT E remember that 
the terms constructive
and destructive
describing feedback 
are not the same as 
positive and negative. 
See the section 
“Seven Feedback 
Characteristics” in 
Chapter 6, “Common 
mechanisms,” for an 
explanation of the 
distinction.
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It is quite common to implement attrition using two resources, life and energy, instead 
of just one, strength. Players use energy to perform actions and lose the game when 
they run out of life. When using these two resources, it is important that they be 
somehow related. Often, players are allowed to spend energy to gain more life. 
Sometimes the relationship between life and energy is implicit. For example, when 
a player must choose between spending energy or gaining life, there is an implicit 
link between the two because players generally cannot do both at the same time.

In a two-player version of attrition, the game must include other actions, and  
games for more than two players often allow other actions that the players can  
perform. Most of the time these actions constitute some sort of production mech-
anism for strength, which increases the effectiveness the players’ defensive or 
offensive capabilities (and thus elaborates the attrition pattern to an arms race  
pattern). Most real-time strategy games include all these options, often with mul-
tiple variants for each.

The winning conditions and effects of eliminating another player have a big impact 
on the attrition pattern. The winning condition does not need to be elimination, 
however. Players might score points, or reach a particular goal outside the attrition 
pattern, which automatically widens the number of strategies available. When there 
is a bonus for attacking or eliminating players, the pattern can be made to stimulate 
the elimination of weaker players.

examples
The trading card game Magic: The Gathering implements an elaborate version of the 
attrition pattern. Figure B.11 presents this implementation, although it shows the 
details from the perspective of a single player only. 

Figure B.11
the attrition mecha-
nism in Magic: The 
Gathering
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In Magic: The Gathering, players can play one card every turn. These cards allow 
players to add lands, summon creatures, cast spells to heal, or deal direct damage to 
their opponent or their opponent’s creatures. But all actions except playing lands 
cost mana (magical energy). The more mana players have, the more they can spend 
each turn and the more powerful actions they can play. Creatures will fight other 
creatures, and when there are no more enemy creatures, they will damage the oppo-
nent directly. Players who lose all their life points are eliminated from the game. 
Magic: The Gathering is an example of a game that implements attrition using sepa-
rate resources for life and energy (or in this case, life and mana).

The different gameplay options in Magic: The Gathering illustrate how attrition can 
work differently. Direct damage briefly triggers a drain. As its name implies, it is fast 
and direct. On the other hand, summoning creatures activates a permanent drain 
on the opponent’s creatures and life. The effects usually are not as powerful as direct 
damage, but because they accumulate over time, they can be quite devastating. The 
cards in the player’s hand determine which options are available to him and exactly 
how powerful those options are. Because players build their own decks from a large 
collection of cards, deck building is an important aspect of Magic: The Gathering. 

The most obvious way to implement attrition is in a symmetrical game. However, 
many single-player games and even certain types of multiplayer games use asym-
metrical attrition. An example of asymmetrical attrition can be found in the board 
game Space Hulk in which one player, controlling a handful of space marines, tries 
to accomplish a mission while the other player, controlling an unlimited supply of 
alien “genestealers,” tries to prevent that. The genestealer player tries to reduce the 
number of space marines to stop them from accomplishing their goals and wins 
when the genestealers have destroyed enough space marines. The space marine 
player usually cannot win by destroying genestealers but must keep the number of 
genestealers under control to survive, because the genestealers become more effec-
tive as their numbers grow. Figure B.12 is a rough illustration of the mechanics in 
Space Hulk.

Figure B.12
Asymmetrical attrition 
in Space Hulk
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related Patterns
n	 Attrition works well with any sort of engine pattern. Trade can be used as an alter-
native form of multiplayer feedback that is constructive instead of destructive and is 
nearly always negative.

n	 Attrition elaborates the dynamic friction pattern.

n	 Attrition can be elaborated by the arms race and worker placement patterns.

Escalating Challenge
n	 Type: Escalation

n	 Intent: Progress toward a goal increases the difficulty of further progression.

n	 Motivation: A positive feedback loop between player progress and the game’s dif-
ficulty makes the game increasingly harder for players as they get closer to achieving 
their goals. This way, the game quickly adapts to the player’s skill level, especially 
when the good performance allows the player to progress more quickly.

Applicability
Use escalating challenge when: 

n	 You want to create a fast-paced game based on player skill (usually physical skill) 
in which the game gets harder as the player advances; his ability to complete tasks is 
inhibited as he goes.

n	 You want to create emergent mechanics that (partially) replace predesigned  
level progression.

Structure
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Participants
n	 Targets represent unresolved tasks.

n	 Progress represents the player’s progress toward a goal.

n	 A task either reduces the number of targets or produces progress.

n	 A feedback mechanism makes the game more difficult as the player progresses 
toward the goal or reduces the number of targets. 

Collaborations
The task reduces targets, produces progress, or does both. The feedback mechanic 
increases the difficulty of the task as the player gets closer to achieving the goal. 

Consequences
Escalating challenge is based on a simple positive feedback loop affecting the dif-
ficulty of the game. Its mechanism quickly adjusts the difficulty of the game to the 
skill level of the player. If failure at the task ends the game, escalating challenge 
ensures a very quick game.

implementation
The task in a game that implements the escalating challenge pattern is typically 
affected by player skill, especially when the escalating challenge pattern makes up 
the most of the game’s core mechanics. When the task is a random or determin-
istic mechanic, players will have no control over the game’s progress. Only when 
the escalating challenge pattern is part of a more complex game system and play-
ers have some sort of indirect control over the chance of success does a random or 
deterministic mechanic become viable. Using multiplayer dynamic mechanisms is 
an option but probably works better in a more complex game system as well.

examples
Space Invaders is a classic example of the escalating challenge pattern. In Space 
Invaders, the player needs to destroy all the invading aliens before they can reach 
the bottom of the screen. Every time the player destroys an alien, all other aliens 
speed up a little, making it more difficult for the player to shoot them.

Pac-Man is another example. In Pac-Man, the task is to eat all the dots in a level, while 
the chasing ghosts make it more and more difficult to get to the last remaining dots 
(see Chapter 5, “Machinations,” for a detailed discussion and diagram of Pac-Man).

related Patterns
By combining escalating challenge with static friction or dynamic friction, a game can 
be created that quickly matches its difficulty to the ability of the player.
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Escalating Complexity
n	 Type: Escalation

n	 Intent: Players act against growing complexity, trying to keep the game under 
control until positive feedback grows too strong and the accumulated complexity 
makes them lose.

n	 Motivation: Players are tasked to perform an action that grows more complex 
if the players fail and in which complexity contributes to the difficulty of the task. 
As long as players can keep up with the game, they can keep on playing, but once 
the positive feedback spins out of control, the game ends quickly. As the game pro-
gresses, the mechanism that creates the complexity speeds up, ensuring that at some 
point players can no longer keep up and eventually must lose the game.

Applicability
Use escalating complexity when: 

n	 You aim for a high-pressure, skill-based game. 

n	 You want to create emergent mechanics that (partially) replace predesigned  
level progression.

Structure Participants
n	 The game produces complexity that 
must be kept under a certain limit by the 
player.

n	 A task performed by the player 
reduces complexity.

n	 A progress mechanism increases 
the production of complexity over 
time. 

Collaborations
Complexity immediately increases the production of more complexity, creating 
a strong positive feedback loop that must be kept under control. The player loses 
when complexity exceeds his ability to manage it.
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Consequences
Given enough skill, players can keep up with the increase in complexity for a long 
time, but when players no longer keep up, complexity spins out of control and the 
game ends quickly.

implementation
The task in a game that implements the escalating complexity pattern is typically 
affected by player skill, especially when escalating complexity makes up most of the 
game’s core mechanics. When the task is governed by a random or deterministic 
mechanism, players will have no control over the game’s progress. Random or deter-
ministic mechanics work a little better in more complex game systems in which 
players have some control over their chance of success. Using a multiplayer task is 
an option, but it probably also works better in a more complex game system.

Randomness in the production of complexity creates a game with a varied pace, 
where players might struggle to keep up with production at its peak but get a chance 
to catch their breath when complexity production slows down a little.

There are many ways to implement the progress mechanic, from a simple time-
based increase of the production of complexity (as is the case in the previous sample 
structure) to complicated constructions that rely on other actions by the player or 
by other players. This way, it is possible to combine escalating complexity with esca-
lating challenge by introducing positive feedback to the progress mechanic as a result 
of the execution of the task.

Escalating complexity lends itself well to serve as part of a multiple feedback structure 
in which the complexity feeds into several feedback loops with different signatures. 
For example, escalating complexity can be partially balanced by having the task feed 
into a much slower negative feedback loop governing the production of complexity.

examples
In Tetris, a steady flow of falling tetrominoes produces complexity. There is a slight 
randomness in this production as the different types of tetrominoes are created 
over time. Players need to place the tetrominoes in such a way that they fit together 
closely. When a line is completely filled, it disappears, making room for new tetro-
minoes. When players fail to keep up, the tetrominoes pile up quickly, and they will 
have less time to place subsequent tetrominoes. This can quickly increase the com-
plexity of the field when players are not careful and cause them to lose the game 
if the pile of tetrominoes reaches the top of the screen. In Tetris, levels create the 
progression mechanism. Every time the player clears ten lines, the game advances to 
the next level and the tetrominoes start falling faster, making it more and more dif-
ficult to place them accurately. In this case, the level mechanism is also an example 
of the escalating challenge pattern.

Figure B.13 represents these mechanics of Tetris. In this diagram, tetrominoes are  
converted into points. The number of points goes up when there are more tetrominoes 
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in the game. This represents the possibility to clear more lines at once and enables a 
high-risk, high-reward strategy. The chart in Figure B.13 clearly shows that once the 
pace grows too great for the player to keep up, the game rapidly spins out of control.

In the independently developed action shooter Super Crate Box, players are required 
to pick up crates containing different weapons, while keeping the number of ene-
mies under control by shooting them. As soon as the player touches an enemy, he is 
killed. Enemies spawn at the top of the screen and run down the level to disappear 
at the bottom. An enemy that makes it to the bottom respawns at the top of the 
screen but moves much faster the second time. The player carries only one weapon 
at a time, and not all weapons are equally powerful. However, because the only way 
to get ahead is to pick up crates and change weapons, the player is forced to make 
the best use of whatever he picks up. The player has to alternate between killing 
enemies to keep their numbers under control and picking up boxes to score more 
points. Figure B.14 represents a diagram for Super Crate Box.

Figure B.13
escalating complexity 
in Tetris

Figure B.14
Super Crate Box has 
the players alter-
nate between scoring 
points and keeping 
enemy numbers under 
control.
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related Patterns
n	 Any type of engine pattern can be used to implement the progress mechanism.

n	 It is common to find the progression mechanism implemented as an escalating 
challenge pattern.

Arms Race
n	 Type: Escalation

n	 Intent: Players can invest resources to improve their offensive and defensive 
capabilities against other players.

n	 Motivation: Allowing players to invest in their offensive and defensive capa-
bilities introduces many strategic options into the game. The player can choose 
strategies that fit his skills and preferences.

Applicability
Use arms race when:

n	 You want to create more strategic options or avoid dominant strategies in games 
that use the attrition pattern.

n	 You want to lengthen the playing time of your game.

n	 You want to encourage players to develop strategies and playing styles that suit 
their individual skills and preferences.

Structure
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Participants
n	 Multiple players that can activate the same (or similar) attack mechanisms.

n	 A strength resource. A player that loses all his strength is eliminated from the 
game.

n	 An optional energy resource that is consumed by upgrades. In some cases, energy 
and strength are the same.

n	 At least one upgrade mechanisms to improve the offensive or defensive capabil-
ities of each player.

Collaborations
The attack mechanisms allow players to drain or steal each other’s strength. 
Activating the attack and upgrade mechanisms require the player to invest energy or 
time. The upgrade mechanisms improve the player’s offensive or defensive capabili-
ties or restore the player’s strength.

Consequences
Arms race introduces many strategic options for players to explore, which can  
make the game difficult to balance. In general, it is best to implement an intransi-
tive (rock-paper-scissors) mechanism in the upgrade options so that every strategy 
has a counter-strategy. For example in many medieval war games, heavy infantry 
beats cavalry, while cavalry beats artillery, and artillery beats infantry. In this case, 
the best strategy and most effective army composition is partially determined by  
the choices made by your opponent.

Many strategic options allow players to develop their own playing styles and strate-
gies. For example, if a player likes a particular mechanism, she can use it more often, 
while if she dislikes a mechanism, she might ignore it.

Using an arms race pattern typically lengthens a game, because players always have 
the option to play defensively at first. This can even delay confrontation and con-
flict for a long time. 

implementation
What resources are required to pay for upgrades is an important design decision 
when implementing an arms race. When strength and energy are the same, the 
player might over-invest and make himself vulnerable, especially if the upgrades 
take time to take effect. When energy is separate from strength, you need to con-
sider carefully what the relationship between strength and energy actually is. 
Strength might determine the production rate of energy. This would create a strong 
positive, destructive feedback loop. Energy might also be converted into strength, or 
energy might be invested to produce strength over time. There are many options.
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A good way to prevent an arms race from lengthening the game too much is to 
make the resource to activate upgrades heavily contested, either because all players 
are trying to harvest the same resources or because upgrades require the player to 
invest strength.

An arms race doesn’t have to be symmetrical. It is possible to create an arms race 
with two different sides, although this would be more difficult to balance.

examples
Many real-time strategy games implement the arms race pattern. For example, 
StarCraft II and Warcraft III allow the player to investigate technology to improve the 
fighting capabilities of his units. In these games, strength is measured as the sum of 
the player’s units and buildings, whereas energy is harvested by worker units and is 
used to upgrade and build new units.

An arms race is also often found in tower defense games, although in those games 
it is an asymmetrical implementation of the pattern. For example, the green and 
blue mechanisms in Figure B.15 represent two different mechanisms that increase 
the offensive capacities of the player (blue) and the enemies (green). In most tower 
defense games, there are many more upgrade mechanisms: Players can upgrade tow-
ers or choose between different towers for different effects, while the enemy waves 
will include other types of enemies that require a different type of response by the 
player. 

related Patterns
n	 Arms race combines well with a dynamic engine to produce energy and strength. 
This combination is found in many real-time strategy games.

n	 Arms race elaborates the attrition pattern.

n	 Arms race can be elaborated by the worker placement pattern.

Figure B.15
An asymmetrical  
arms race in a tower 
defense game
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Playing Style Reinforcement
n	 Type: Miscellaneous

n	 Intent: By applying slow, positive, constructive feedback on player actions, the 
game encourages specialization and gradually adapts to the player’s preferred play-
ing style.

n	 Also Known As: Role-playing game (RPG) elements.

n	 Motivation: Slow, positive, constructive feedback on player actions (actions that 
have another effect on the game) causes the player’s avatar or units to develop over 
time. As the actions themselves feed back into this mechanism, the avatar or units 
specialize over time, getting better at performing a particular task. As long as there 
are multiple viable strategies and specializations, the avatar and the units will, in 
time, reflect the player’s preferences and style.

Applicability
Use playing style reinforcement when: 

n	 You want players to make a long-term investment in the game that spans mul-
tiple play sessions. 

n	 You want to reward players for building, planning ahead, and developing per-
sonal strategies. 

n	 You want players to grow into a specific role or strategy. 

Structure
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Participants
n	 Actions players can perform whose success depends in part on the attributes of 
the player’s character or the units involved in the action.

n	 A resource ability that affects the chance that actions succeed and that can grow 
over time.

n	 An optional resource experience points that can be used to increase an ability. 
Some games call these skill points and include a different resource called experience 
points that cannot be traded.

Collaborations
n	 Ability affects the success rate of actions.

n	 Attempting actions generates experience points or directly improves abilities. 
Some games require the action to be successful, while others do not.

n	 Experience points might be spent to improve abilities. 

Consequences
Playing style reinforcement works best in games that are played over multiple ses-
sions and over a long time.

Playing style reinforcement works well only when multiple strategies and play styles 
are viable options in the game. When there is only one, or only a few, all the players 
will use the same strategy, which makes the game uninteresting.

Playing style reinforcement can inspire min-maxing behavior with players. This 
refers to a strategy in which players seek the best possible options that will allow 
them to gain powerful avatars or units as fast as possible. If min-maxing is success-
ful, it usually becomes a dominant strategy. This can happen when the strength of 
the feedback is not distributed evenly over all actions and strategies.

Playing style reinforcement favors experienced players over inexperienced players, 
because the experienced ones will have a better understanding of their options and 
the long-term consequences of their actions.

Playing style reinforcement rewards the player who can invest the most time in 
playing the game. In this case, time spent playing can compensate for different lev-
els of skill among players, which can be a wanted or an unwanted side-effect.

It can be ineffective for a player to change strategies over time in a game with 
playing style reinforcement, because the player will lose the benefit of previous 
investments in another play style.

implementation
Whether or not to use experience points is an important decision when imple-
menting play style reinforcement. When using experience points, there is no direct 
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coupling between growth and action, allowing the player to harvest experience 
with one strategy to develop the skills to excel in another strategy. On the other 
hand, if you do not use experience points, you have to make sure that the feedback 
is balanced for the frequency of the actions; actions that are performed more often 
should have weaker feedback than actions that can be practiced infrequently.

Role-playing games are the quintessential example of games built around the play 
style reinforcement pattern. In these games, the feedback loops are generally quite 
slow and balanced by an escalating challenge, dynamic friction, or a stopping mechanism  
to make sure avatars do not progress too fast. In fact, most of these games are balanced 
in such a way that progression is initially fast and gradually slows down, usually 
because the required investment of experience points increases exponentially.

You must also decide whether the action needs to be executed successfully to gener-
ate the feedback. How you decide this issue can dramatically affect player behavior. 
When success is required, the feedback loop gains influence. In that case, it is proba-
bly best to have the difficulty of the player’s tasks also affect the success of an action 
and to challenge the player with tasks of varying difficulty levels, thus allowing 
them to train their avatars. When success is not required to earn experience points, 
players have more options to improve neglected abilities during later and more dif-
ficult stages. However, it might also encourage players to perform a particular action 
at every conceivable opportunity, which could lead to some unintended, unrealistic, 
or comic results, especially when the action involves little risk.

examples
Many pen-and-paper role-playing games implement playing-style reinforcement. 
For example, in Warhammer Fantasy Role-Play and Vampire: The Masquerade, play-
ers are awarded experience points for achieving goals in the game. They can spend 
experience points on improving their character’s abilities. Curiously, the original 
role-playing game Dungeons & Dragons doesn’t have playing-style reinforcement. In 
Dungeons & Dragons, players are awarded experience points that they need to accu-
mulate to advance to the next level. However, the player has no influence over how 
her character’s abilities improve when she levels up; the character’s abilities do not 
adapt to the playing style or preferences of the player.

In the computer role-playing game The Elder Scrolls IV: Oblivion, the avatar’s progress 
is directly tied to her actions. The avatar’s ability corresponds directly to the number 
of times she has performed the associated actions. Oblivion implements playing-style 
reinforcement without experience points.

In Civilization III, there are different ways in which a player can win the game. A 
player reinforces his chosen strategy of military, economic, cultural, or scientific 
dominance (or any combination) by building city improvements and wonders of 
the world that favor that strategy. In Civilization III, several resources take the role of 
experience points; money and production are prominent examples. These resources 
are not necessarily tied to one particular strategy in the game. Money generated by 
one city can be spent to improve production in another city in the game.
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related Patterns
When playing style reinforcement depends on the success of actions, it creates a 
powerful feedback. In that case, a stopping mechanism is often used to increase the 
price of new upgrades to an ability. 

Multiple Feedback
n	 Type: Miscellaneous

n	 Intent: A single gameplay mechanism feeds into multiple feedback mechanisms, 
each with a different profile.

n	 Motivation: A player action activates multiple feedback loops at the same time. 
Some feedback loops will be more obvious than others. This creates a situation 
where the exact outcome or success of an action might be predictable in the short 
term but can have unexpected results in the long run.

Applicability
Use multiple feedback when: 

n	 You want to increase a game’s difficulty. 

n	 You want to emphasize the player’s ability to read the current game state.

Structure Participants
n	 An action that can be activated by 
the player

n	 Multiple feedback mechanisms
that are activated by the action

Collaborations
The action activates multiple feedback mechanisms that ultimately feed back into 
the action.

Consequences
For the player, multiple feedback loops are more difficult to understand than single 
feedback loops. As a result, using this pattern makes a game more difficult.

NOT E in the example 
structure, there are two 
feedback mechanisms. 
the action (black) 
activates one feedback 
mechanism (red) that 
is positive, limited in 
duration, and strong, 
but it also activates a 
secondary feedback 
mechanism (blue) that 
is negative, perma-
nent, and weak. this 
illustrates just one way 
of setting up multiple 
feedback loops. there 
are many more.



ptg8274339

deSiGn PAttern LibrAry B-35

O
n

li
n

e
 A

p
p

e
n

d
ix

 B

If the feedback loops that the action activates can have dynamic profiles that 
change during play (which they often do), it is very important for the player to be 
able to read the current profile, because their balance might shift considerably dur-
ing the game.

Finding the right balance between the multiple feedback loops is an important issue 
in a game that uses this pattern.

implementation
When creating a game with multiple feedback, it is very important to make sure 
that the profiles of the different feedback loops are different. In particular, the speed 
of the feedback needs to vary if this pattern is going to be effective. Alternatively, 
varying the profile of the feedback over time can work well. To this end, adding 
playing style reinforcements and stopping mechanisms to one or more of the feedback 
loops is a good design strategy.

The most common combination for multiple feedback seems to be fast, construc-
tive, positive feedback coupled with slow, negative feedback. This creates a trade-off 
between short-term gains and long-term disadvantages.

examples
The economy of SimCity includes many multiple feedback mechanisms. For exam-
ple, the city requires energy, so the player needs to build an energy plant. In the 
short term, the plant will spur economic growth as it powers residential, com-
mercial, and industrial zones. However, in the long term, power plants also cause 
pollution and will have negative effects on surrounding zones. Likewise, infrastruc-
ture like roads are required to make a city grow, but in the long term, as they are 
used more frequently, they also cause problems such as traffic jams and pollution. 

Attacking in Risk feeds into three positive feedback loops of varying speeds and 
strengths (see the discussion of Risk in Chapter 6, “Common Mechanisms”). Most 
obviously, using armies to capture more lands allows the player to build more 
armies. The cards implement a slower form of feedback; a player who successfully 
attacks gains a card, and certain combinations of three cards allow him to gain extra 
armies. The last type of feedback is created by capturing continents. A continent will 
give a player a number of bonus armies each turn; this is a very fast and strong feed-
back loop, but one that requires a higher investment by the player to achieve.

related Patterns
Playing style reinforcements and stopping mechanisms are good ways to ensure that the 
profile of the feedback loops that an action feeds into changes over time.
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Trade
n	 Type: Miscellaneous

n	 Intent: Allow trade between players to introduce multiplayer dynamics and neg-
ative, constructive feedback.

n	 Motivation: Players are allowed to trade important resources. Usually this means 
that leading players will face tougher negotiations, while trailing players can help 
each other to catch up. Trade works especially well when the flow of resources is 
unstable and/or not equally distributed among players.

Applicability
Use trade when: 

n	 You want to introduce multiplayer dynamics to the game.

n	 You want to introduce negative, constructive feedback.

n	 You want to introduce a social mechanic that encourages players to interact with 
one another via commerce (as opposed to combat).

Collaborations
The tradable resources can be exchanged by the players using the trading mechanism.

Structure Participants
n	 A trading mechanism that allows 
resources to be traded among players

n	 Multiple tradable resources that 
can be exchanged or used in various 
ways 

n	 Actions that require using tradable 
resources

Consequences
Trade introduces negative feedback that does not really slow down the game but 
usually helps trailing players catch up (because it is not destructive).

Trade favors players with good social and bartering skills.
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implementation
In board games, trade is very easy to implement. The game simply needs to specify 
how and when players can trade resources. In a multiplayer computer game, trade is 
also easy. However, creating a trading mechanism that involves computer-controlled 
characters is far from trivial.

To implement a successful trading mechanism, multiple tradable resources are 
required, and the production rates of these resources must fluctuate or at least be 
different among players. Trading works only when there is an imbalance in the 
distribution of resources among the trading parties. It also helps to include many 
actions that consume the tradable resources and to create actions that consume 
resources of multiple types at once, because this further exaggerates the imbalance 
when players choose different courses of action.

examples
In The Settlers of Catan, players build up an uncertain dynamic engine: villages and 
cities that produce the resources used to build more villages and cities. The random-
ness of these engines is partly countered by allowing all players to trade resources 
with the player who is currently taking her turn. The exchange rate is set by mutual 
agreement and usually determined by the availability of the resource and the posi-
tion of the player. Players who are in the lead can afford to pay more for their 
resources. When close to winning, players might find it impossible to make a deal.

In Civilization III, players can exchange strategic resources, money, and knowledge. 
This mutually benefits both parties and allows weaker civilizations to catch up fairly 
quickly.

related Patterns
Attrition can be an alternative source of multiplayer feedback that is not constructive 
but destructive in nature.

Worker Placement
n	 Type: Miscellaneous 

n	 Intent: The player controls a limited resource (workers) that she must commit to 
activate or improve different mechanisms in the game.

n	 Motivation: A set of mechanisms create a complex and dynamic core of the 
game. The player must choose how to distribute a limited resource (workers) to 
activate these mechanisms. The limited number requires the player to change the 
distribution of the workers to operate the game mechanisms most effectively.
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Applicability
Use worker placement when:

n	 You want to introduce constant micromanagement as a player task.

n	 You want to encourage players to adapt to changing circumstances.

n	 You want to introduce timing as a crucial factor in successful strategies.

n	 You want to create a subtle mechanism for indirect conflict.

Structure Participants
n	 The core mechanisms, usually a 
complex structure combining multiple 
mechanisms

n	 Multiple stations that activate or 
improve the core engine

n	 A workers resource that can be allo-
cated to different stations

n	 An optional worker pool where 
uncommitted workers are gathered

Collaborations
Workers are placed at different stations to activate or improve the core mechanisms;  
the workers operate the core mechanisms. Workers can be moved between stations  
relatively easily, making it possible to quickly change the core mechanism’s behavior. 

Consequences
Worker placement requires that players spend time moving their workers between 
stations. The pace of the game should allow for this, and the player should be able 
to prepare for game events that require her to change the distribution. 

Worker placement makes the most sense when the behavior of the core mechanisms 
that the workers operate needs to be changed from time to time. This means that it 
is best used in complex games that create different gameplay phases.

Worker placement usually requires the player to constantly manage her workers, 
and as a result it can easily dominate a game’s economy.

NOT E the structure 
of the core mecha-
nisms as a converter 
engine is an example. 
Worker placement can 
be applied to any set 
of sufficiently complex 
mechanisms. Worker 
placement requires only 
that several stations for 
workers be allocated to 
activate or improve cer-
tain mechanisms.
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implementation
When implementing worker placement, it is important to balance the number of 
workers with the number of stations. When the number of workers remains the 
same for the duration of the game, this balance can make the difference between 
constant changes to the worker distribution and players settling into a fixed distri-
bution. Relatively low numbers of workers require the player to adapt more often, 
whereas with high numbers the need to adapt is reduced.

When the number of workers is high or when players can produce extra workers 
in the game, you have to be careful not to create a situation in which all the sta-
tions are manned and there is no longer any reason to change worker distribution. 
One way to prevent this is to allow multiple workers to be placed at a single spot in 
order to improve their effect further. In the structure diagram, this is the case for the 
middle station.

Many games that implement worker placement have the players competing for the 
same stations. For example, players need to place workers in the same gold mine to 
produce gold for their economy. When players are competing for the same stations, 
it is important to include a mechanism that forces workers to be removed from their 
stations. This could be as simple as returning all workers to the pool automatically 
after each turn or a more direct action that allows players to remove their oppo-
nents’ workers. Competition for stations creates a subtle and indirect competition 
between players where they can block each other’s plans by blocking vital stations. 

Worker placement creates many opportunities to add dynamic friction to the system. 
Dynamic friction is created when placing workers consumes resources or when the 
placement of a worker at a station costs a constant upkeep. In both cases, placing 
more workers will consume more resources, countering the benefits of having more 
workers in play. At the same time, when placing consumes resources (and there 
is no upkeep), changing worker distribution is penalized. This creates a version of 
worker placement that is less adaptive and rewards forward planning.

examples
In StarCraft, the workers are space construction vehicle (SCV) units that can be 
assigned different tasks: They can harvest minerals or gas, the game’s two main 
resources, or they can build and repair buildings for the player base. The player can 
build as many SCV units as he sees fit and often can assign many SCV units to the 
same (or similar) tasks. In StarCraft there is some competition for stations because all 
players can harvest resources from the same locations on the map. This is an impor-
tant feature in some levels, but in most levels the player starts with relatively safe 
and exclusive access to some resources. Figure B.16 represents the worker placement 
mechanics for StarCraft. 
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In the board game Agricola, players build and operate a farm in the eighteenth cen-
tury. The player starts with a family of two. Her family members are her workers. 
They can be assigned to different tasks, such as sowing crops, building fences, gath-
ering wood and other resources, and so on. Every turn she must assign workers to 
new tasks. An important task is to collect enough food to feed the growing family. 
In Agricola, players compete for the same stations; only one worker can be assigned 
to each of the tasks. If no player performs a particular task in a turn, the resources 
it generates build up (for example, wood piles up when nobody collects it). Because 
this can happen, the relative benefits of each task shift constantly. Figure B.17 shows 
some mechanisms for Agricola.

Figure B.16
Worker placement in 
StarCraft 

Figure B.17
Worker placement with 
some of the mecha-
nisms of Agricola
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related Patterns
n	 Worker placement can elaborate almost any other pattern, in particular the con-
verter engine, engine building, attrition, and arms race patterns.

n	 Dynamic friction initiated by the number of workers or by placing workers is a 
good way to apply negative feedback to a worker placement pattern.

Slow Cycle
n	 Type: Miscellaneous

n	 Intent: A mechanism that cycles through different states slowly, creating peri-
odic changes to the game’s mechanics.

n	 Motivation: By introducing a slowly operating mechanism outside the player’s 
control, the game’s economy shifts between different phases. This requires players 
to adapt and develop more versatile strategies.

Applicability
Use a slow cycle when:

n	 You want to create more variation by introducing periodic phases to the game.

n	 You want to counteract the dominance of a particular strategy.

n	 You want to force players to periodically adapt strategies to shifting 
circumstances.

n	 You want to require a longer period of learning before achieving mastery of the 
game. (Players experience slow cycles less frequently, so have fewer opportunities to 
learn from them.)

n	 You want to introduce subtle, indirect strategic interaction by allowing players to 
influence the cycle’s period or amplitude.

Collaborations
The state of the slow cycle interacts with the affected mechanism.
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Structure Participants
n	 A slow cycle mechanism oscillates 
between two (or conceivably more) 
states.

n	 The affected mechanism depends 
on the state of the slow cycle.

Consequences
The effects of a slow cycle are often hard to see, especially for new players. This cre-
ates a long learning curve that might aggravate the difference between more and 
less experienced players.

In most cases, players have little, if any, impact on the slow cycle mechanism. This 
means that it is important to communicate the current state of the cycle clearly to 
the player. Slow cycles that cause seemingly random changes to the game economy 
are generally not considered to be fair.

implementation
There are many ways to implement slow cycles. A slow cycle might alternate 
between two binary states (for example, it might activate or deactivate another 
mechanism periodically), or it might shift between two states more gradually. 

It is best if a slow cycle affects all players equally. This tests the players’ ability to 
predict and prepare for phase shifts in the game’s economy. In the context of a 
game world, slow cycles can easily be characterized as changes in the seasons, tides, 
or business cycles beyond the control of the players.

Slow cycles can be made less deterministic by introducing random periods in the 
cycle. This requires players to pay more attention to the current state of the cycle. 
Another way to make cycles less deterministic is by randomizing the amplitude of 
the cycle. For example, a slow cycle might produce some sort of energy for a short 
period every ten turns. In this case, either the short period can be randomized or the 
number of resources can be randomized without affecting the cycle’s rhythm. 

NOT E the struc-
ture here is just an 
example. there are 
many different ways to 
build slow cycles, and 
there are many ways it 
can affect other game 
mechanisms.
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examples
As was mentioned in the section “Focusing on Different Structures in Your 
Mechanics” in Chapter 10, “Integrating Level Design and Mechanics,” StarCraft II
uses a variety of different slow cycle mechanisms in different levels.

In the board game Caylus, the players build a castle and the accompanying town. 
The game is divided into three phases, and at the end of each phase players are 
rewarded for their contribution to the castle or penalized for the lack thereof. The 
three phases create a subtle slow cycle mechanism. Players need to plan their con-
tributions carefully, especially because the players are also competing to place their 
workers to harvest the resources needed to help build the castle (Caylus also imple-
ments the worker placement pattern). In addition, the combined actions of the 
players might speed up or slow down the current cycle. Being able to predict the 
cycle and how it affects the plans of other players is an effective but advanced strat-
egy in this game.

related Patterns
n	 A slow cycle elaborates the static engine, static friction, and stopping mechanism
patterns.

n	 Because a slow cycle causes shifts in the game’s economic phases, it combines 
well with the worker placement pattern to allow the player to respond to these shifts.
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 CGetting Started  
with Machinations
You can create and simulate Machinations diagrams in the Machinations Tool, a 
graphical editor and simulator created by Joris Dormans. This tutorial will get you 
up to speed creating diagrams in the tool. First we’ll introduce the user interface, 
and then we’ll show you, step by step, how to create a diagram. However, our 
tutorial doesn’t include a detailed discussion of how and why all the elements of 
the diagram work. The basic elements of Machinations diagrams are explained 
in Chapter 5, “Machinations.” Chapter 6, “Common Mechanisms,” discusses a 
few more advanced elements, and Chapter 8, “Simulating and Balancing Games,” 
explains how to use charts and artificial players.

You can also download many of the diagrams in this book from our companion 
website, www.peachpit.com/gamemechanics.

Where to Find the Machinations tool

The Machinations Tool is written in Adobe Flash, and the easiest way to use it is to run it 
in a web browser that has Flash enabled. You can find an online version of the tool, and 
a wiki with additional information, at www.jorisdormans.nl/machinations. You can also 
download an offline version of the tool there in a Flash format (.swf) file. It does not need 
to go through an installation process, and you can store it anywhere on your computer. 
If you want to run the tool offline, simply tell your browser to open Machinations.swf on 
your own system.

Using Machinations Without a Browser
You don’t have to have Adobe Flash installed in a web browser to use the Machinations 
Tool. You can also download the stand-alone Flash Player. It is available for Windows, 
Macintosh, and Linux. You can download the latest version free on the Adobe website at 
www.adobe.com/support/flashplayer/downloads.html (where it is called the Projector). 
When you have the Flash Player installed, you can load the Machinations Tool instantly 
by double-clicking the Machinations.swf file.

The Flash Player also enables you to create an executable program containing the 
Machinations Tool itself. Start the Flash Player and load the Machinations.swf file. Then 
select the Create Projector option from the player’s File menu (not the Machinations 
Tool’s File menu). This will prompt you to save an executable file somewhere on your 
system. When you have saved the executable, you can run it to start the Machinations 
Tool in the Flash Player automatically.

C-1

Online Appendix C

www.peachpit.com/gamemechanics
www.jorisdormans.nl/machinations
www.adobe.com/support/flashplayer/downloads.html
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Exploring the Interface
We’ll start with an overview of the Machinations interface. It is divided into four parts.

n	 The title bar runs across the top of the interface and contains version informa-
tion and the Run button. Clicking the Run button starts a simulation running; 
clicking it again stops it. 

n	 The drawing area is the largest part of the screen. This is where you will draw 
the diagrams. 

n	 The Graph, Edit, File, and Run panels are tabbed on the top right. The Graph 
panel allows you to select drawing tools; the Edit panel shows options to cut, copy, 
and paste images; and the File panel allows you to save and open local files and 
even to export the diagrams to Scalable Vector Graphics (.SVG) files. The Run panel 
provides additional options for running a simulation.

n	 The element panel is on the bottom right. Here you will find the controls that 
allow you to change attributes of the nodes and connections in the diagram. The 
element panel is context-sensitive and changes depending on which type of ele-
ment is currently selected in the drawing area. When no node or connection is 
selected, the element panel shows controls that allow you to change the attributes 
of the diagram as a whole.
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Graph Panel
The Graph panel consists of 16 tool buttons that allow you to select and add 
elements to the diagram. If you allow the mouse to hover over a tool, a tooltip will 
pop up to tell you its meaning.

Select tool (the arrow) selects elements in the diagram. 

Text Label inserts text in the diagram for explanatory purposes. Has no 
effect on the simulation. Not to be used for setting labels on elements of the 
diagram, which is done in the element panel.

Group Box inserts a resizable dotted-line box in the diagram for illustration 
purposes. Has no effect on the simulation.

Chart inserts a resizable chart into the diagram for collecting and displaying 
data from simulation runs.

Pool inserts a pool into the diagram. 

Gate inserts a gate into the diagram. 

Resource Connection inserts a resource connection into the diagram. After 
selecting this tool button, click a node in the diagram that will send resources 
along the new resource connection you are inserting (the new connection  
will become an output of the node). Then click another node that will receive 
the resources.

State Connection inserts a state connection into the diagram. After 
selecting this tool button, click a node in the diagram that will transmit 
its state along the new state connection. Then click either another node, a 
resource connection, or a state connection to serve as the target of the state 
connection.

Source inserts a source into the diagram. 
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Drain inserts a drain into the diagram. 

Converter inserts a converter into the diagram. 

Trader inserts a trader into the diagram. 

Delay inserts a delay into the diagram. A delay may be converted into a queue 
by clicking the Queue button in the delay’s element panel.

Register inserts a register into the diagram. 

End Condition inserts an end condition into the diagram. 

Artificial Player inserts an artificial player into the diagram. Because these do 
not need to be connected to other elements, they can be placed conveniently 
out of the way.

Edit Panel
The Edit panel offers buttons to implement the familiar features of any digital 
editing tool. These features are also available through keyboard shortcuts, which are 
listed on the buttons. Note that Adobe Flash, which implements the Machinations 
Tool, does not permit using the Control key, so the keyboard shortcuts are just 
letters. For example, to copy the currently selected elements in the diagram, simply 
press C. It is not case-sensitive.

n	 Select All (A) selects and highlights all the elements of the diagram.

n	 Copy (C) copies all selected elements to the clipboard.

n	 Paste (V) pastes all the elements on the clipboard into the diagram, down and to 
the right of the elements they were copied from.
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n	 Undo (Z) will undo previous actions in inverse order. Note that the Undo button 
can even undo clearing the diagram with the New button and opening a new file 
with the Open button (both described in the next section).

n	 Redo (Y) will redo previously undone actions.

n	 Zoom (M) toggles between a zoomed-out and a zoomed-in view. If a 
Machinations diagram is very large, the elements may be too small to work with 
conveniently. Zoom permits you to zoom into a view where they are all a standard 
size. Press M again to zoom back out.

In addition to these commands, the Backspace and Delete (or Del) keys on your 
keyboard will delete the currently selected elements of the diagram.

File Panel
The File panel provides buttons to create new empty diagrams and to save and load 
files containing diagrams.

caUtion: closing YoUr BroWser can lose YoUr Work!

Adobe Flash does not provide any means to warn you if you have unsaved work on your 
diagram. If you close your browser or the stand-alone Flash Player with unsaved work, it 
will be lost without warning. Get in the habit of saving your diagrams frequently.

n	 New (N) clears the current Machinations diagram and starts a new one.  
Caution: The Machinations Tool provides no warning if you do this without 
having saved your work. However, you can undo the effect of the New button 
using the Undo button on the Edit panel.

n	 Open (O) clears the current Machinations diagram and loads a new one from a 
Machinations file. Caution: The Machinations Tool provides no warning if you 
do this without having saved your work. However, you can undo the effect of the 
Open button using the Undo button on the Edit panel.

Not E Most computer 
art tools do not allow 
the user to undo and 
redo past a file being 
opened, so this may  
be unfamiliar to it you.
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n	 Import (I) imports other diagrams into the one you are currently working on. All 
the elements of the imported diagram will be selected at the time they are imported, 
which permits you to move them around as a group.

n	 Save (S) saves your diagram into a Machinations file.

n	 Export Selection (E) exports a subset of your diagram to a new Machinations 
file. Only the currently selected elements will be exported.

n	 Save as SVG (G) saves your diagram as a Scalable Vector Graphics (SVG) file. 
These files cannot be reloaded into Machinations later but are convenient for incor-
porating your diagrams into other documents. All the Machinations diagrams in 
this book were saved as SVG files. You can edit SVG files in a free, open source edit-
ing tool called Inkscape.

aBoUt Machinations Files

The Machinations Tool saves diagrams in extensible Markup Language (XML) files. 
This is an open standard format for storing any kind of data in text files designed to be 
readable by computers and humans. however, Machinations does not format its XML files 
for easy reading by humans. Because we may change the file format in the future, we do 
not document it here. We also discourage trying to edit your Machinations files in a text 
editor or any tool other than Machinations itself.

Run Panel
The Run panel permits you to change how you run your diagram and how much 
data will be displayed at a time by any charts that it contains. We discuss the Run 
panel in more detail in the section “Quick Runs and Multiple Runs” later in this 
appendix. We also described it in the section “Collecting Data from Multiple Runs” 
in Chapter 8, “Simulating and Balancing Games.”

t Ip Inkscape is 
available for download 
at www.inkscape.org.  
It is available for  
Linux, Windows, and 
Mac oS X.

www.inkscape.org
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Element Panels
Each element of the diagram, plus the Machinations diagram as a whole, has its 
own element panel. When no element is selected, the diagram element panel 
appears. In this section, we will explain the functions of the boxes and settings that 
can appear in the element panels. Because many elements share the same boxes, 
to avoid redundancy we have listed them in alphabetical order and included in 
parentheses the names of the elements to which they apply.

n	 Actions specifies the number of action points that a node uses in a turn-based 
diagram. Zero is a legitimate value. (All node elements except registers.)

n	 Actions/Turn, when on the diagram panel in a turn-based diagram, specifies the 
number of action points available to be used before it is time for the next turn. If 
set to zero, a new turn will never occur unless the player interactively fires a node 
whose name is end turn. When on the artificial player panel, Actions/Turn sets the 
number of times in a given turn that the artificial player will fire. (Artificial player 
nodes and diagram panel only, and visible only when Time Mode is turn-based.)

n	 Activation. See the section “Activation Modes” later in this appendix and also 
the section “Activation Modes” in Chapter 5, “Machinations.” (All node elements 
except registers and end conditions.)

n	 Author records the name of the author of the diagram. No simulation function. 
(Diagram panel only.)

n	 Color Coding toggles color-coding on and off for the diagram. See the section 
“Color-Coded Diagrams” in Chapter 6, “Common Mechanisms.” (Diagram panel 
only.)

n	 Color sets the color of the element. See the section “Changing Colors” later in 
this appendix. (All elements.)

n	 Dice sets the default randomness for all die symbols in the diagram. (Diagram 
panel only.)

n	 Distribution toggles the visibility of resource movements on or off. The choices 
are fixed speed and instantaneous. If instantaneous, resources jump from node to 
node and are not seen to move along resource connections. (Diagram panel only.)

n	 Height sets the height of the drawing area in pixels. (Diagram panel only.)

n	 Interactive toggles on and off to determine whether a register is interactive or 
passive. (Register nodes only.)

n	 Interval sets the number of seconds per time step for the diagram. Fractional 
values are allowed. (Diagram panel only, and visible only when Time Mode is not
turn-based.)

n	 Formula stores the formula by which the value of a noninteractive register is cal-
culated from its inputs. Not available on interactive registers. (Register nodes only.)
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n	 Label names nodes, sets flow rates on resource connections, sets many kinds of 
values on state connections. See Chapter 5, “Machinations.” (All elements.)

n	 Max sets the maximum number of resources a pool can hold. The default is -1, 
meaning unlimited. (Pool nodes only.)

n	 Max. Value sets the maximum value that a register can display, whether interac-
tive or passive. (Register nodes only.)

n	 Min. Value sets the minimum value that a register can display, whether interac-
tive or passive. (Register nodes only.)

n	 Multiplayer sets the default randomness for all multiplayer symbols in the dia-
gram. (Diagram panel only.)

n	 Name records the name of the diagram. No simulation function. (Diagram panel 
only.)

n	 Number sets the number of resources already in a pool at the time the simulation 
starts running. (Pool nodes only.)

n	 Pull Mode sets the behavior of most nodes with respect to pulling and push-
ing resources. See the section “Pulling and Pushing Resources” in Chapter 5, 
“Machinations.” (All nodes except delays, registers, and artificial players.)

n	 Queue toggles conversion of a delay node into a queue node. (Delay nodes only.)

n	 Resources see the sidebar “Understanding the Resources Box” later in this appen-
dix. (Pools, sources, and converters only.)

n	 Scale X fixes the horizontal scale of a chart. (Charts only.)

n	 Scale Y fixes the vertical scale of a chart. (Charts only.)

n	 Script is the box in which artificial player scripts are entered. See the section 
“Simulated Playtests” in Chapter 8, “Simulating and Balancing Games.”

n	 Skill sets the default randomness for all skill symbols in the diagram. (Diagram 
panel only.)

n	 Starting Value sets initial value of interactive register nodes. (Register nodes only.)

n	 Step sets the amount by which an interactive register node changes when its up 
or down arrows are clicked. (Register nodes only.)

n	 Strategy sets the default randomness for all strategy symbols in the diagram.
(Diagram panel only.)

n	 Thickness sets the line thickness of many elements. Cosmetic; no simulation 
function. (All elements except groups, charts, and text labels.)

n	 Time Mode sets the time mode of the diagram. The choices are asynchronous,  
synchronous, and turn-based. See the section “Time Modes” in Chapter 5, 
“Machinations.” (Diagram panel only.)

t Ip You can make 
a line break appear 
in Label text in the 
diagram by insert-
ing a vertical bar, as 
in |, where you want 
the line to break. For 
example, the text 
predator|birth rate 
would be rendered on 
two lines, with birth 
rate centered below 
predator.



ptg8274339

GeTTInG STArTed WITh MAChInATIonS C-9

O
n

li
n

e
 A

p
p

e
n

d
ix

 C

n	 Display Limit sets the number of resource tokens that a pool will display before 
switching to showing digits instead. The default is 25. Cosmetic; no simulation 
function. (Pool nodes only.)

n	 Type controls whether a gate is deterministic or non-deterministic. See the section 
“Gates” in Chapter 5, “Machinations.” (Gate nodes only.)

n	 Width sets the height of the drawing area in pixels. (Diagram panel only.)

Creating a Diagram
In the next few sections, we’ll take you through the process of actually building  
a Machinations diagram, explaining a few more details about the Machinations  
Tool as we go. To use this as a tutorial, open the Machinations Tool and follow  
these instructions.

Adding, Selecting, and Deleting Elements
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Adding nodes to a diagram is very simple. Select the type of node you want to draw 
from the Graph panel and click the drawing area to add the node. You can add 
multiple nodes by clicking multiple times. The Machinations Tool automatically 
selects the last node you added and shows its attributes in the element panel.

1.  Click the Source tool  ; then click somewhere on the left side of the  
drawing area.

You can select additional elements by holding down the Shift key as you click. 
Pressing the Shift key also automatically selects the select tool from the graph 
panel. You can also draw a box around elements in the diagram to select them, as 
in most art tools.

To delete elements, select them with the Select tool from Graph panel and press 
the Delete or Backspace key on your keyboard. 

To deselect all currently selected elements, single-click an empty space in  
the diagram.

2.  Add a pool to the right of the source by selecting the Pool tool and clicking 
the drawing area.

Adding Connections
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Connections are added in a similar way. First, select the resource connection tool 
from the Graph panel. Next, click the node where you want the connection to 
start and then click the node where you want the connection to end. Resource 
connections transfer resources in only one direction, so you must enter them in 
this order. The connection will lock to the nodes at each end and will stretch if you 
move either node.

3.  Select the Resource Connection tool ; then click first on the source that you 
entered and then the pool that you entered.

When you end a connection at an element of the diagram (a node or another 
connection’s label), the element will be highlighted as you move your mouse  
over it. If no element is highlighted, your new connection will not be connected  
up properly.

You can also start and end connections anywhere in the drawing area, assuming 
that you will connect them later. Simply click an empty spot in the diagram 
to start a connection and then double-click at another empty spot to end the 
connection there. (Clicking once will only create a way point in your connection, 
as described in the next paragraph.)

If you have started drawing a connection and want to add a bend, or way point
(also called a control point), in the connection to make it look nicer as you draw, 
move the mouse to an empty spot in the diagram where you want it to bend, 
and single-click. The connection will continue from that point. You can continue 
inserting as many way points as you like. Double-click to end the connection.  
If you have already entered a complete connection, you can insert a way point 
into it by selecting it and pressing the Insert key or the W key. (Macintosh users 
will have to use the W key.)

You can change the start and end points of a connection by selecting them and 
dragging them to different nodes. You can also move way points around the 
diagram by dragging them.
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Running Your Diagram

If you’ve connected the source to the pool, your diagram is ready to run. 

4.  Click the Run button in the title bar. 

This should cause the source to start producing resources that accumulate in the 
pool, and the Run button will change into a Stop button. (If you don’t see any 
resources arriving in the pool, your resource connection is not connected up 
properly.) While running, you cannot edit a diagram, and all the panels will be 
grayed out. 

5. Click the Stop button to stop the simulation running.



ptg8274339

GeTTInG STArTed WITh MAChInATIonS C-13

O
n

li
n

e
 A

p
p

e
n

d
ix

 C

Changing Flow Rates

You can change the flow rate of a resource connection by adding a label to it. In 
our example, the production rate of a source is governed by the label of its output 
resource connection.

6.  Select your resource connection, and then type the letter D into its Label box in 
the element panel. Press the Run button. 

The source will produce a random number of resources varying between one and 
six, every time step (by default, one second) instead of the default rate of one. 

7. Press the Stop button.
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UnCerTAIn FLoW rATeS
To indicate that a resource connection has a random or uncertain flow rate, you can 
type special one- or two-letter values into the Label box. Different values indicate 
different types of uncertainty, as follows:

D stands for Dice. The label changes to a die symbol. This indicates 
uncertainty caused by a random number generator: dice or a spinner in a 
board game or a random number generator in a computer game.

S stands for Skill. The label changes to a joystick symbol. This indicates 
uncertainty caused by the varying level of skill that different players possess.

M stands for Multiplayer. The label changes to two pawns. This indicates 
uncertainty caused by direct tactical interactions among players and a player’s 
inability to predict what the others will do.

ST stands for Strategy. The label changes to a light bulb. This indicates 
uncertainty caused by strategic interactions among players or variations in 
one player’s strategy.

These different labels are intended for illustration to make your diagram clearer. For 
example, if you want to indicate that a drain on some of your player’s resources is 
caused by hostile actions by other players, you might use the M (multiplayer) label 
on the resource connection leading to the drain.

Note that the difference between these symbols is only cosmetic. Functionally, 
the Machinations Tool implements them all the same way, as a random number 
generator.

In the next section, we explain what happens when you run a diagram containing 
any of these symbols.
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ChAnGInG The deFAULT rAndoM vALUeS

When you use a symbol to indicate uncertainty and run the diagram, the Machinations 
Tool generates a random value for it according to the contents of one of the boxes 
in the diagram’s element panel. (This is the element panel visible when nothing is 
selected in the diagram.) The boxes are labeled Dice, Skill, Multiplayer, and Strategy. 
Each box defines the behavior of the symbols of its type in the diagram. By default, 
the Dice box contains D6 (indicating a six-sided die), and the other boxes are empty. 
If a box is empty, when you run the diagram, any symbols controlled by that box 
will produce a value of zero, meaning no resources will flow.

You can control the generated values for all the symbols in the diagram by changing 
the settings in the boxes. The format to use is described in the sidebar “Random 
Flow Rates” in Chapter 5, “Machinations.”

8.  Deselect all elements by clicking an empty space in the drawing area and type 
D3-1 in the Dice box.

This will generate a random value by rolling a virtual three-sided die and 
subtracting 1 from the result; in other words, it generates values from 0 to 2.
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9. Run the diagram to observe the effect. Stop it when you are ready.

Every time step (normally one second), zero, one, or two resources will be 
generated.

For the next step, we’ll switch from a symbol to an explicit percentage notation.

10.  Select the resource connection and type 50% in its Label box, replacing the D3-1 
that was there before.

This means that every time step, there is a 50% chance that the source will 
produce a resource.

Activation Modes
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When a node performs an action, we say that it fires. Each node in a diagram can 
be set to one of four different activation modes that determines when and why the 
node fires. To change the activation mode of a node, select the node and then click 
one of the four small buttons next to the word Activation in the node’s element 
panel. The four activation modes of a node of an element are as follows:

Passive. The node does not fire unless triggered by an external process. 

Interactive. The node can be clicked by a player to make it fire. 

Automatic. The node fires every time step. 

Starting. The node fires only once, when the diagram first begins to run. 

11.  Place a converter in the diagram by selecting the Converter tool  and clicking 
below the pool you inserted earlier. Connect a resource connection from the pool 
to the converter.

12.  Place another pool to the left of the converter. Connect a resource connection 
from the converter to the new pool.

13.  Now change the converter to interactive mode by selecting it and then selecting 
the interactive mode button  from its element panel.

The converter will change to show a double outline instead of a single one. By 
changing the converter to interactive mode, you can fire the converter while the 
diagram is running by clicking it.

14.  Run the diagram, wait a few seconds for resources to build up in the upper pool, 
and then click the converter a few times.

When a converter fires, it will pull resources through its inputs to create new 
resources for its outputs.

Not E By default, 
sources and artificial 
players are set to the 
automatic activation 
mode when you first 
place them in the 
diagram. The other 
nodes are passive by 
default.
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Adding State Connections

You add state connections in the same way that you add resource connections 
(including way points). Select the state connection tool from the Graph panel, click 
the node where you want the state connection to start, and click the element where 
you want it to end. State connections must always begin at a node, but they may 
end at a node or at either type of connection.

In our example, we want a new state connection to start from the lower pool and 
end at the source’s output.

15.  Select the State Connection tool ; then click the lower pool to start the state 
connection, and click the upper resource connection (not the pool) to end it.

State connections often end at resource connections like this. In this way, state  
connections can affect the flow rate of those resource connections. The state 
connection you have just added is a label modifier, one of the four types of 
state connections documented in the section “State Changes” in Chapter 5, 
“Machinations.”
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ChAnGInG The LABeL

Notice that the label of the state connection is automatically set to +1. This means 
that for every resource added to the lower pool, the flow rate of the source’s output 
is increased by one. However, as the flow rate is currently 50%, it is better to change 
the state connection’s label to +10%.

16. Select the state connection, and then type +10% in its Label box.

17. Run the diagram, and click the converter occasionally. 

Now the flow rate is increased by 10% for every resource on the pool. Watch 
what happens to the label on the source’s output as resources arrive in the lower 
pool. In addition to the resource connection’s label changing, you can see the 
source producing more resources.

Note that you can drag a label of any connection to a different nearby location to 
improve the legibility of your diagram.

18.  Select the +10% label to the left of the state connection, and try dragging it 
elsewhere.
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dYnAMIC ChAnGeS WhILe rUnnInG

19.  Change the label of the converter’s input connection to 3. (Select the resource 
connection going into the converter, and then type 3 in its Label box.)

This means that the converter changes three resources from the upper pool into 
one resource going to the lower pool.

20. Run the diagram again, and click the converter occasionally.
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Adding a Chart

Machinations diagrams enable you to keep track of the state of a pool or a register 
over time in a chart. We discussed charts in detail in the section “Collecting Data 
From Multiple Runs” in Chapter 8, “Simulating and Balancing Games.”

21. Select the chart tool  from the Graph panel, and place a chart in the diagram.

You can drag the chart’s corners to change its size. 

22. Connect a state connection from the upper pool to the chart. 

To avoid visual clutter, state connections between a pool and a chart are repre-
sented by two small arrows when they are not selected.

23.  Run the diagram again to see how the chart tracks the resources accumulating in 
the upper pool.

Not E It is 
theoretically possible to 
track any element with 
a chart, but it is only 
meaningful to track 
pools and registers 
because they are the 
only nodes that store 
resources (or values).

t Ip You can hide any 
state connection if you 
want. Simply select 
the state connection 
and type a 0 in the 
Thickness box in the 
connection’s element 
panel. Beware, though: 
This will effectively hide 
part of the structure of 
your diagram. don’t 
do it unless you really 
need to reduce clutter 
and already understand 
your diagram well.
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By default the chart will automatically scale the values on its x- and y-axes as the 
diagram runs. If you want to create a chart with a fixed scale, you can enter num-
bers in the Scale X and Scale Y boxes on the chart’s element panel.

Adding an Activator
As our diagram is drawn so far, the flow rate from the source can exceed 100%.  
This is permitted, because in a Machinations diagram percentages higher than 100% 
are interpreted as meaning that the value is 1 plus a probability of whatever fraction 
over 100% the label is. In other words, a flow rate on a source’s output of 130% 
means that every time step, the source will generate one resource and has a 30% 
chance of generating a second one. 

However, if we want to prevent the source’s flow rate from going over 100%, we 
have to stop the player from clicking more than five times on the converter. To do 
this, we have to add an activator that will prevent the interactive converter from 
firing again (even if you click it) after it has done so five times. Remember that an 
activator is one type of state connection. An activator dictates the circumstances in 
which its target (the element it points to) may operate and deactivates the target if 
the conditions are not right.
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The activator will connect the lower pool to the converter. However, because  
there already is a connection between them, it is better to make sure it follows a 
different route. 

24.  Select the State Connection tool , click the lower pool, and then single-click 
the empty space in the diagram below the pool to create a way point. Then click 
the converter to complete the state connection.

25. Finish the activator by changing its label to read <5. 
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26. Run the diagram again to see how it works. 

You will be able to click the converter only when the number of resources in the  
lower pool is less than five. When it equals or exceeds five, the converter is deactivated.

Note that deactivated elements are rendered light gray when the diagram is 
running. This gives you a much better view of the diagram’s current state.

Adding an End Condition

Next we’ll add an end condition and an activator to specify what causes the 
simulation to end.

27.  Select the End Condition tool , and add an end condition to the diagram 
above the upper pool. Label it win. Connect a state connection from the upper 
pool to the end condition. Label the new state connection >50 to indicate that 
the player wins when she accumulates 50 resources. 

Note that we moved the end condition’s label above the end condition node to 
make the diagram clearer.

28. Run the diagram, clicking the converter if you want, but do not stop it.

The diagram will stop running by itself when the end condition is fulfilled.
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Adding an Artificial Player

Machinations diagrams allow you to define artificial players. Artificial players are 
used to automate the process of playing. They work by specifying simple commands 
and conditions. 

29.  Select the artificial player tool , and place an artificial player somewhere out of 
the way in the diagram.

We’re going to set up our artificial player to fire the converter every time the upper 
pool has collected more than five points. To do this, however, both the upper pool 
and the converter need to have names so that the artificial player can fire them.

30.  Select the upper pool, and type points in its Label box. Select the converter, and 
type upgrade in its Label box.

31.  Now select the artificial player, and type if(points > 3) fire(upgrade) in the Script 
box in the element panel.

32. Run the diagram again. Do not click the upgrade converter. 

Sit back and watch how your artificial player saves you from the effort of having 
to play yourself.
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Using Additional Features
In addition to all of the foregoing, the Machinations Tool offers a few miscellan-
eous features.

Making Quick Runs and Multiple Runs

Diagrams with end conditions and artificial players are suitable to run quickly and 
multiple times, because they can play themselves and stop themselves. This is a 
useful feature to quickly collect data over many simulated play sessions. In the Run 
panel, the Runs box controls how many runs the tool will perform, and the Visible 
Runs box controls how many runs any charts in the diagram will display.

33.  Switch to the Run panel, and click the Multiple Runs button to start a multiple 
run of the diagram. 

When you run a diagram multiple times, the tool keeps track of which end 
condition stopped the diagram and how long it ran on average. A pop-up box 
shows this information while the runs are being performed. The chart also 
collects the data for each run for you to review when the runs are done. In our 
example, there is some randomness in the source’s production rate, so the chart 
looks a little different on each run.
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34.  Click the Reset button in the Run panel to return the diagram to its normal 
editable state.

35.  Click the word clear in the top-right corner of the chart to clear all the  
collected data.

You can find full details of how to perform quick runs and multiple runs in the 
section “Collecting Data from Multiple Runs” in Chapter 8, “Simulating and 
Balancing Games.”

Changing Colors

You can change the colors of the elements in the diagram and also of the resources 
in the diagram. Simply select the element you want to change and set a new color. 
Colors can be specified by typing the name of the color into the Color box in the 
element panel.

The Machinations tool uses the following color names: Black, White, Red, DarkRed, 
Orange, OrangeRed, Yellow, Gold, Green, Lime, Blue, LightBlue, DarkBlue, Purple, Violet, 
Teal, Gray, DarkGray, and Brown. These names are not case-sensitive.

We explained how to use color-coded diagrams in the section “Color-Coded 
Diagrams” in Chapter 6, “Common Mechanisms.”

t Ip You can also use 
hexadecimal notation 
for more precise control 
over your colors. 
Make sure that the 
hexadecimal color 
follows the following 
format: 0x000000. For 
example, 0xff0000 is 
red, 0x00ff00 is green, 
and so on.
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Understanding the resoUrces Box

Pools, sources, and converters all have a special resources box in their element panels. 
In a color-coded diagram, it can be used to override the default behavior of these nodes 
with respect to colored resources.

normally, if you place a pool in the diagram, then change its color to blue with the Color 
box, and then use the number box to place some resources in the pool, those resources 
will be black, not blue. This is because, by default, the resources box contains the word 
black. To place blue resources in a blue pool, you must type blue into the resources box.

The situation with sources and converters is a bit more complex. The color of the 
resources that a source or a converter generates is governed by the color of the node’s 
output, not by the node’s own color. This is what makes it possible for a single source to 
generate resources of more than one color, as shown here:

The source is black, while the colors of the two resource connections are red and 
blue. Clicking the source will produce one resource of each color traveling along their 
respective outputs to the pool.

however, if a source or converter node and its output are the same color, the color of the 
resource that travels along the output will be overridden by the color in the resource box 
in the node’s element panel (which is black by default). In the previous diagram, if you 
turn the source red, it will start to send black resources along the red output, but if you 
type green into its resources box, the source will produce green resources along the red
output. It will continue to produce blue resources along the blue output, because the 
blue output does not match the red source.
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Adding Text Labels and Group Boxes

Finally, Machinations allows you to add text labels with the TextL button  and 
group boxes with the Group button . These elements have no effect on how the 
diagram behaves. However, they can be useful to clarify your diagram by identifying 
specific mechanisms.
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